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Abstract

Structure-based methods in drug discovery have become an integral part of the
modern drug discovery process. The power of virtual screening lies in its ability to
rapidly and cost-effectively explore enormous chemical spaces to select promising
ligands for further experimental investigation. Relative Free Energy Perturbation
(RFEP) and similar methods are the gold standard for binding affinity prediction
in drug discovery hit-to-lead and lead optimization phases, but have high com-
putational cost and the requirement of a structural analog with a known activity.
Without a reference molecule requirement, Absolute FEP (AFEP) has, in theory,
better accuracy for hit ID, but in practice, the slow throughput is not compatible
with VS, where fast docking and unreliable scoring functions are still the standard.
Here, we present an integrated workflow to virtually screen large and diverse chem-
ical libraries efficiently, combining active learning with a physics-based scoring
function based on a fast absolute free energy perturbation method. We validated the
performance of the approach in the ranking of structurally related ligands, virtual
screening hit rate enrichment, and active learning chemical space exploration;
disclosing the largest reported collection of free energy simulations to date.

1 Introduction

In the last decade, the impact of structure-based methods in drug discovery has increased thanks to
improvements in the accuracy of force fields, GPU computing, and machine learning[WKS+23]. A
prime example of these advances is the development and implementation of structure-based virtual
screening (VS) methods, which have become an integral part of the modern drug discovery process.
The effectiveness of VS lies in its capacity to quickly and cost-efficiently examine vast chemical
landscapes, reducing potential drug candidates from millions to a more manageable number for
subsequent analysis. This capability has profound implications for drug discovery, potentially saving
significant amounts of time and resources[FXH+22]. Despite its considerable advantages, virtual
screening also poses challenges and limitations, particularly concerning the accuracy of predictions.

One of the biggest limitations of VS is the scoring functions used to predict binding affinity. These
scoring functions are often rough approximations and usually do not accurately predict the true binding
energy or correct binding pose [BMD23]. They often struggle to balance speed and accuracy, making
it difficult to reduce both false positives and negatives in VS applications [BM23]. Additionally, in
ligand-based virtual screening, structurally similar compounds are often assumed to have similar
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activity. However, minor structural changes can sometimes lead to significant changes in activity, a
phenomenon known as an “activity cliff", which can dramatically impact predictive accuracy[HLR23].

In that context, binding free energy calculation methods offer a unique advantage in the field of
computer-aided drug design and virtual screening. Binding free energy calculations can be more
accurate than simple docking scores as they consider not just the static interaction of the ligand and
protein, but also the dynamic changes that occur upon binding, including conformational changes and
solvation effects[AWH+17]. Relative Free Energy Perturbation (RFEP) and similar methods are the
gold standard for binding affinity prediction in drug discovery hit-to-lead and lead optimization phases.
However, RFEP’s computational cost hampers its application to large libraries and the requirement
of a structural analog with a known activity does not allow RFEP to be used in hit identification
campaigns[KBD+19]. Without a reference molecule requirement, Absolute FEP (AFEP) has, in
theory, better accuracy for hit ID, but in practice, the slow throughput is not compatible with virtual
screening, where fast docking and simple, unreliable scoring functions are still the standard[HG21].

To overcome the computational cost and low throughput that have made the application of AFEP
to virtual screening campaigns infeasible, we make two advancements. First, we present AQFEP, a
novel physics-based function based on a fast absolute free energy perturbation method that shows
superior ranking performance when compared to other standard scoring functions. This advancement
allows us to screen tens of thousands of molecules in a fraction of the time compared to other
absolute free energy methods. Second, we combine this increased in-silico screening throughput with
Bayesian optimization algorithms, to substantially decrease the computational cost of screening the
majority of top-scoring compounds with AQFEP. We analyze various surrogate model architectures
and acquisition functions to evaluate their effectiveness in efficiently screening the most promising
ligands with AQFEP in the context of a virtual screen for drug discovery. We perform these analyses
on both straightforward and challenging systems to demonstrate the flexibility of our approach.
Finally, we utilize this workflow on a prospective virtual screen through a 1.17m compound library
for hit-finding on a novel protein target.

2 Methods

2.1 System Preparation and Molecular Docking

The published[SBB+20] 3D coordinates of the cMet protein structure and congeneric ligand
set were downloaded from https://github.com/MCompChem/fep-benchmark/tree/master/
cmet. The 3D structure of GLP1R was downloaded from the Protein Data Bank[BBB+22] (pdb
ID 7S15), and hydrogens were added using the open-source PyMol software[Sch15] and visu-
ally inspected. The GLP1R agonist ligands considered in this study[GEF+22], were drawn using
JSME[BE13] to generate the SMILES. Using RDKit[L+13] in Knime[BCD+09] the 3D structures
were created, hydrogens added, and protonation states were generated using in-house rule-based
SMIRKS and visually inspected.

The commercially available compound library used in the prospective screen, was generated starting
from the MCULE in stock database https://mcule.com/database/, including more than 5M
ligands. The library was deduplicated as described above, and filtered in Knime to ensure drug-like
properties, removing reactive groups and unwanted chemical moieties. The library was visually
inspected and further curated using Datawarrior[SFvKR15]. The final set including 1.177M ligands
was prepared for ligand docking as described above. Part of this library was used for the cMet and
GLP1R VS tests. GNINA 1.0[SK21] with the Vinardo[QV16] scoring function was used for all
molecular docking studies.

2.2 AQFEP

AQFEP uses an absolute free energy perturbation calculation based on the double-decoupling al-
chemical protocol (Fig. 5). The double-decoupling approach is considered the “gold standard"
for absolute free energy calculations by ensuring thermodynamic consistency, accurate sampling
of the free-energy landscape, and wide applicability to a variety of different systems. For a more
detailed description of this method and its advantages, we refer the reader to a comprehensive text
on the topic [MABM+20]. By using an absolute free energy calculation, which directly calculates
the binding free energy of the given ligand-protein pair, the procedure requires much less human
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guidance than the more typical relative free energy calculations. RFEP calculates differences in
binding free energies between pairs of ligands and thus requires careful selection of congeneric ligand
pairs and specification of the scaffold relationship between the ligands. While absolute free energy
calculations are known for being difficult to converge and giving inconsistent results unless run for
very long simulation times [CCJ+], the AQFEP method is tuned to reduce simulation noise and
allows for significantly reduced simulation time.

In order to achieve the speeds needed for free energy simulations to be applied to VS workflows
we made several adjustments to AQFEP. First, the simulation time per lambda window was chosen
to be shorter than standard free energy perturbation calculations (usually 5 ns[CCJ+]), in order to
evaluate the energy minimum closer to the provided complex conformation. For the method to
perform as a scoring function for a given ligand pose, it must ensure it is evaluating a thermodynamic
state indicative of that pose. In spirit, this is quite different from attempting to sample the full state
space in the hope of calculating the partition function and measuring the binding free energy of
the ligand-protein pair, which would ignore the given pose of the ligand. In practice, sufficiently
sampling the state space for such a calculation requires far too much simulation time, and running the
simulations longer than is done in AQFEP only allows the ligand to briefly sample conformations
too dissimilar from the proposed pose, significantly increasing the statistical noise. Due to this
design choice, the method is very dependent on the quality of the proposed ligand pose(s) which can
impact ranking performance (cf. Section System Preparation and Molecular Docking). Despite this,
AQFEP performs a rigorous, multi-step alchemical transformation, unlike end-point methods such as
MMGBSA or MMPBSA[BFMM13], and is thus significantly more accurate and physically realistic
than such end-point methods.

2.3 Chemical Space Search Strategy

Bayesian optimization[PP05] is a subset of active learning that helps guide the choice of exper-
iments based on some surrogate models’ predictions. Formally, we seek to find the set of top-k
molecules (M ) from a chemical library (D) that maximizes some black-box objective function
(here AQFEP of a candidate compound). Top-k scoring molecules x ∈ M where M is such that:
argmaxM⊂D:|M |=k

∑
x∈M f(x)

We begin by first calculating the objective function f(x) on a set of n points. The evaluations of this
function are stored in the dataset L which contains the labeled observations (AQFEP score for a given
candidate compound). A surrogate model f̂(x) is trained with this dataset and makes predictions on
the remaining unlabeled set of data D′. The model predictions are passed to an acquisition function
α that determines the utility of acquiring new data points to be labeled. These selected points are
then evaluated and added back into the labeled set L. This process is repeated until some stopping
criteria are met. In this work, we use a fixed budget size divided into T steps to determine when the
algorithm should stop acquiring labels.

Algorithm 1 Bayesian Optimization

Input: objective function f(x), acquisition function α, surrogate model f̂(x), and some chemical
library D
Select random batch S ⊂ D
Evaluate objective f(x) to generate labels ys for s ∈ S
Initialize L, the labeled set of data (s, ys) for s ∈ S
for t← 1 to T do

Train surrogate model f̂(x) using labeled dataset L
Select new batch St ⊂ D using acquisition function α
Evaluate objective function f(x) on St

Update L with new labeled batch
end for

To evaluate different surrogate models’ performance, we compared two commonly used search
strategies: random search and top dockers. In this case, random search is indicative of an exhaustive
search strategy where every compound has an equal probability of being evaluated. In addition, we
also evaluated the performance of selecting compounds based on their docking scores (Top Dockers)
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Figure 1: The GraphDock architecture. EGNN take 3 inputs: positions, node embeddings, and edge
embeddings. If there are n atoms in an input structure, the position tensor is an n × 3 tensor containing
the x, y, and z coordinates of each atom. Edges in the protein-ligand graph are generated using a 3Å
cutoff distance. Nodes that fall outside of this 3Å radius are ignored. The protein-ligand graph is then
further truncated to include only atoms within 3 nearest-neighbor connections to the ligand atoms in
order to reduce the complexity of the graph.

obtained from the GNINA docking software with the Vinardo scoring function. Due to computational
limitations, we did not re-dock the compounds with different random seeds and in the figures reported
in the paper, there are no error bars reported for this condition.

2.4 Surrogate Models

In this work, we utilized three different surrogate models: Random Forest regression using Morgan
fingerprints and D-MPNN as described by [YSJ+19], and an architecture inspired by [SVC+23],
GraphDock. Further information regarding surrogate model implementation and details regard-
ing hyperparameters can be found in the Appendix. Below we present a high-level overview of
GraphDock.

2.4.1 GraphDock

In this work, we implement a 3D graph neural network, similar to the PointVS model described
in [SVC+23](Fig. 1). This model is a lightweight E(n) equivariant graph neural network model,
that operates on the 3D protein-ligand complex. The E(n) GNN has demonstrated state-of-the-art
performance in regression and classification of chemical datasets [SHW21] while avoiding the use of
computationally expensive spherical harmonics. The model is capable of exploiting the symmetries
in the protein-ligand complex without the need for augmenting the dataset with translations, rotations,
and reflections, as is required for non-equivariant networks such as 3D convolutional neural networks
[FMS+20].

We make several adjustments to our model to make it more effective for small datasets and easier to use
in Bayesian optimization algorithms where prediction uncertainties are needed. In the PointVS paper,
they use 48 EGNN layers, we reduce the number to 5 layers in this work to reduce computational
complexity and improve training time[SVC+23]. In addition, we append a single Bayesian linear
layer, with a Gaussian prior, for use in regression tasks and in order to save computational costs
associated with estimating uncertainty from the model[KES22, WVB+18]. Protein-ligand graphs
were constructed using the same protein and ligand conformation as used for AQFEP scoring. In
addition, edges in the protein-ligand graph were generated using a 3Å cutoff distance. This cutoff
was selected because it approximates inter-molecular interactions such as hydrogen bonding within
the complex. The connected protein-ligand complex is then truncated to only atoms within 3 nearest-
neighbor connections to the ligand atoms.For more information on graph featurization and other
hyperparameters, readers can turn to the appendix.

3 Results and Discussion

3.1 AQFEP: Superior Ranking Performance

We tested the accuracy of AQFEP on the cMet protein kinase using two common applications of
interest for drug discovery: 1) evaluation of the free energy of binding on a set of congeneric ligands;
2) application to virtual screening.
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Figure 2: Comparison of the predicted vs experimental free energy of binding for FEP+[SBB+20]
(top left), Prime MMGBSA[SBB+20] (top center), and AQFEP (top right). The effect of binding
pose prediction on AQFEP is shown in the bottom left plot. The X-axis includes the number of
top poses from GNINA/Vinardo scoring function profiled with AQFEP for each ligand. On the
Y-axis is reported the corresponding R2 and Spearman (Rho) correlation based on the best AQFEP
scoring poses. Pose 0 corresponds to the ligand position from simple ligand alignment available
from[SBB+20]. The bottom right plot includes the comparison of the correlation and ranking
performance of AQFEP compared to other commonly used methods. Glide R2=0.002 is close to the
X-axis and therefore not visible in the plot.

3.1.1 Congeneric ligand test

RFEP is the state-of-the-art approach for evaluating the difference in free energy of binding of related
ligands, and a large number of benchmark sets are available in the literature[RLS+22]. However, it
has several limitations that make it challenging to apply in certain contexts. For example, RFEP is
known to be challenging for large perturbations, changes affecting opposite regions of the molecule
simultaneously, charge perturbations, large scaffold changes, and perturbations affecting a linker
region in the molecule[MAM+20]. AQFEP can be used in all those cases and it does not require
an expert user to carefully superimpose the ligand to the reference compound. When evaluating
performance on the cMet benchmark set[SBB+20], we find promising ranking performance(Fig. 2),
that is close to FEP+, but at a fraction of the computational cost. The results show clear improvements
compared to MMGBSA, or molecular docking (Glide and GNINA/Vinardo).

Since AQFEP’s MD simulation time is limited for each lambda window to maximize speed, the final
prediction will be strongly influenced by the energy minimum closest to the starting conformation. If
the starting conformation is far from the physically most important energy well, it is questionable if
MD, even with enhanced sampling, will be the best approach to identify the correct lowest energy
configuration. To quantify the impact of incorrect ligand conformation on downstream affinity
predictions using AQFEP, we re-scored the top 10 poses generated from GNINA/Vinardo in the
cMet benchmark described above. Re-scoring with AQFEP the second and third top poses from
GNINA/Vinardo (Fig. 2) improved the ranking performance of our method. Considering additional
poses beyond 3 did not result in large changes in the ranking performance of the method. For this
particular case, using the Vinardo top-scoring pose for each ligand in AQFEP resulted in better
performance compared to re-scoring ligand positions generated from ligand alignment (shown as
pose 0 in the plot in Fig. 2).
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Ligand IC50 (µM) Vinardo Rank AQFEP Rank
CHEMBL3402751 2.1 550 13
CHEMBL3402747 3.4 53 20
CHEMBL3402755 4.2 9 7
CHEMBL3402748 5.3 124 9
CHEMBL3402752 30 870 49

Table 1: Ranking performance of the 5 active ligands for AQFEP vs. Docking using Vinardo

3.1.2 VS enrichment test

We created a realistic VS test set including 1 active ligand for every 54000 commercially available
drug-like compounds. The 5 low micromolar inhibitors of cMet were selected from the previously
discussed congeneric series test set[SBB+20]. For this evaluation we used a classical funnel approach,
selecting the top 1000 ligands from molecular docking for AQFEP rescoring. Protein kinases are
known to be ideal cases for molecular docking and the Vinardo scoring function was able to rank
the 5 ligands in the top 1k compounds (Fig. 6). Rescoring with AQFEP identified 2 actives among
the top 10 compounds and all 5 active ligands in the top 50 (Table 1). This analysis showed a clear
advantage for AQFEP in early enrichment ranking performance when compared to Vinardo.

3.2 ML Driven Chemical Space Exploration Maximizes Efficiency and Hit Rate

3.2.1 Retrospective Test - GLP1R

Despite large improvements in computational efficiency, AQFEP in practice is still too slow to be
applied to the ultra-large virtual screens that have now become the norm. For example, ZINC, a
popular open-source database of commercially available compounds, now has close to 30 billion
entries [TTC+23]. These libraries are challenging to screen against even with standard structure-
based drug design tools (e.g. docking) and were previously thought to be unattainable for free energy
calculations. Search optimization strategies exist to efficiently search through chemical libraries
for compounds that have desirable properties, such as active learning or Bayesian Optimization
(BO). However, due to the computational cost of free energy methods, generating sufficiently large
quantities of data needed to train models that are broadly generalizable to vast chemical space is not
possible. Bayesian optimization and active learning have been previously applied to virtual screening
campaigns using molecular docking [BKK+21, GSC21] and RFEP [TWF+22, KBD+19], but to our
knowledge, we disclose its application to the largest set of AFEP calculations to date.

To mitigate the impact of growing library size, we employ a Bayesian optimization strategy to perform
a model-guided search and seek to find a set of top-k molecules that have the lowest binding affinity as
measured with AQFEP. We tested this approach (c.f. Section Bayesian Optimization) on the GLP1R
receptor, a challenging Family B GPCR membrane protein related to type 2 diabetes[JRB+17]. We
included two weak agonists as actives[GEF+22] in a library of more than 12,720 commercially
available ligands with drug-like properties. As an initial evaluation to demonstrate how AQFEP
and Bayesian optimization algorithms can be used together, we calculated AQFEP scores for all
compounds in this library. We also included in this library 2 known active molecules to evaluate the
ability of our method to screen known actives in the presence of a large number of decoys. Data
acquisition was simulated with an initial random 2% selection followed by sequential 2% acquisitions
for 5 iterations totaling a 12% total library screen. We test several surrogate models that are typically
used in Bayesian optimization strategies including Random Forest (RF) with Morgan fingerprints and
D-MPNN [YSJ+19]. In addition, we also compare these to a 3D Graph Neural Network architecture
(GraphDock). To quantify the advantages of model-guided search, we benchmarked our approach
against random search, indicative of an exhaustive search through the library, and the top-scoring
compounds from the docking program GNINA using the Vinardo scoring function (see Methods).

Bayesian optimization using any of the surrogate models tested, yields clear improvements over
other heuristic search algorithms. The RF model operating on molecular fingerprints showed similar
performance across acquisition functions in the top-k task (Fig. 3 and Table 4). A similar pattern
emerges when examining the D-MPNN surrogate with both greedy strategies performing best. The
GraphDock model performed best when compared to other surrogates with UCB finding 322 of the
top 500, on average.
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Figure 3: Bayesian optimization performance on GLP1R retrospective test as measured by the
number of top 500 scores found as a function of total compounds evaluated. Each trace represents
the performance of a given surrogate with a specific acquisition function. Each experiment began
with 2% random selection followed by 5 iterations of 2%, for a total of 12% (1530 compounds). The
total library size was 12,720. Error bars reflect ± one standard deviation across 10 runs.

Figure 4: Bayesian optimization performance on GLP1R retrospective test as measured by the
average hit rate across 10 runs. Each bar represents the performance of a given surrogate with a
specific acquisition function and indicates how often a given surrogate-acquisition pairing can find
both known actives in the library. The red dashed line indicates the theoretical max performance (e.g.
finding both actives in all 10 runs). The red dashed line is 0.13% (2/1530). Error bars reflect ± one
standard deviation across 10 runs.

An alternative way of understanding the performance of the surrogate model is to calculate the number
of times each screening workflow identified one of the known actives placed within this library (Fig
4 and Table 5). The RF model utilizing Morgan fingerprints performed remarkably well with the
ϵ-greedy acquisition function having an average hit rate of 0.12 ± 0.04. When using the D-MPNN
as a surrogate, two different greedy acquisition functions found both known actives in 10/10 runs
(max hit rate is 0.13% 2/1530). Interestingly, while GraphDock performed quite well in the top-k
task, this model’s hit rate was low when compared to other surrogates. This effect may be due to
the structural similarity of the two active compounds helping a 2D approach (D-MPNN and RF) to
identify both simultaneously. In contrast, GraphDock, is affected by the quality of the docked poses
used to train the model. To further investigate, we examined the individual poses of the known actives
that were generated with GNINA/Vinardo. We found that one of the two active compounds had a
predicted pose that was quite different from the X-ray conformation of related agonist compounds. In
addition, AQFEP scores for the active compounds in this library had relatively low ranks and both
active compounds did not place in the top 500 in the precomputed library of 12,720 (Active 1 FEP
Rank=1102, Active 2 FEP Rank=1737). It is likely that this wrong pose, combined with relatively
low AQFEP scores for the actives, hampered the ability of GraphDock to identify this active ligand.
Finally, both random search and docking fail to screen any known active ligands.

3.2.2 Prospective Test - Novel Protein Target

We next turned to evaluate the effectiveness of this workflow applied to a prospective search in a
much larger chemical space. Here, we screened a 1.17m compound library of commercially available
compounds (MCULE) against a novel protein target. In this experiment, we performed two internal
controls to show that our method was intelligently sampling the chemical space. First, we randomly
selected selected 10,000 compounds to evaluate the number of compounds that have low AQFEP
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scores. Second, we docked the entire library (1.17m) with GNINA and selected 10,000 compounds
with the lowest docking scores. From here we can establish a baseline on how conventional heuristic
selection strategies score with AQFEP. To ensure the highest quality labels for our algorithm, we
removed AQFEP scores from this set if the simulation had a convergence error of greater than
1 kcal/mol. This resulted in 7,542 and 8,930 ligands in the Random and Top Dockers selection
respectively.

We used this heterogeneous sample (random selection plus top-dockers) to serve as our initial seed set
of labeled data in our active learning workflow. We performed 3 iterations of active learning with a
10,000 compound acquisition size. In each iteration, we also examined the convergence error for our
AQFEP scores, and scores with greater than 1 kcal/mol error were removed. This resulted in 6,792,
3,317, and 3,527 compounds profiled in tranches 3 through 5 respectively. In total, we performed
30,108 free energy simulations throughout our workflow, representing to our knowledge the largest
reported free energy screens to date. We can understand how well our algorithm is performing by
looking for changes in the median AQFEP score across iterations. If our algorithm is performing as
intended, we should see the median AQFEP score decrease across Bayesian optimization iterations.
Utilizing a D-MPNN surrogate with a greedy acquisition function we can see in Figure 7, that across
iterations, model-guided selection selects consistently lower-scoring compounds across iterations,
and is substantially better than both internal controls. Based on the analysis of the AQFEP free energy
of binding distribution for the random sample we defined a promising ligand to have a predicted
score of -20 kcal/mol. The number of such promising ligands identified in each iteration (Table 2)
showcases the efficiency of the proposed method.

Search Strategy Number of Ligands identified with AQFEP<-20 kcal/mol
Random 16

Top Dockers 46
Tranche 3 (D-MPNN) 305
Tranche 4 (D-MPNN) 351
Tranche 5 (D-MPNN) 267

Table 2: Number of ligands with low AQFEP scores across tranches

4 Conclusion

In this work, we describe AQFEP, a physics-based approach to evaluating the free energy of binding
for diverse ligands to protein targets that is superior to molecular docking scoring functions in
predicting ligand binding free energy. It balances speed and ligand ranking accuracy. The speed of
AQFEP enables the virtual screening of libraries of tens of thousands of ligands at unprecedented
accuracy in a target-independent way. Compared to RFEP, AQFEP does not require a similar
compound with known activity, it can be used to score a pose directly after docking without the need
for careful alignment to a congeneric compound. It is significantly faster, with one ligand typically
taking 1-2 hours on one Nvidia T4 GPU, approximately 10 times faster than RFEP and 40-70 times
faster than other AFEP solutions on comparable hardware.

Most importantly, the speed of AQFEP also enables the generation of high-quality labeled datasets
large enough for the training of a variety of supervised machine learning models. These models
achieve speeds comparable to standard docking scoring functions. A pose-dependent 3D-EGNN
using AQFEP labels can be used as a surrogate model in a Bayesian optimization framework enabling
efficient search through libraries of millions of ligands. This potentially reduces the need for profiling
additional ligands with AQFEP to only those that are structurally novel.

This ML-guided search of chemical space using AQFEP as an objective function shows improvements
in both hit rate and percent of top compounds screened when compared to random and other heuristic
search algorithms (top dockers). Across Bayesian optimization iterations in a prospective search, a
greedy D-MPNN surrogate model selects lower-scoring compounds than other selection strategies
(top dockers and random search).

Together, this work demonstrates the effectiveness of the unification of a fast and accurate physics-
based scoring function with BO algorithms to unlock the capability to perform large virtual screens
using free energy calculations.
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5 Appendix

5.1 AQFEP

AQFEP double-decoupling alchemical protocol is shown in Fig. 5. A general comparison of
computational methods to predict ligand-protein free energy of binding is reported in Table 3.
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Figure 5: Double-decoupling alchemical protocol

Method Time per ligand on 1 T4
GPU

Congeneric ligand
required

Docking seconds/minutes No
MMGBSA minutes/hours No

AQFEP 1-2 hours No
RFEP 1-2 days Yes
AFEP 1 week No

Table 3: General computational time comparison

5.1.1 Speed Comparison to Other Methods

To increase the ligand throughput of AQFEP, so that it could be used within a VS workflow, several
changes were implemented in AQFEP. Most notably, the MD simulation time for each lambda window
was chosen to be shorter than standard free energy perturbation calculations. This adjustment allows
AQFEP to be used at a throughput much higher than traditional free energy perturbation methods,
allowing the virtual screening of libraries of tens of thousands of ligands. For instance, using 20k
NVIDIA T4 GPUs, AQFEP can reach 10-20k ligands profiled per hour (Table 3). However, this
design choice causes the method to be very dependent on the quality of the proposed ligand pose(s)
which can impact ranking performance. In the sections that follow, we highlight this effect and show
its impact on downstream scoring with AQFEP.

5.2 Bayesian Optimization

5.2.1 Acquisition Functions

Below we provide brief descriptions of the acquisition functions used in this work. We refer the
reader to other works that describe these acquisition functions in more detail[SSW+16].

In this work, we evaluated the following acquisition functions:

Random(x) ∼ U(0, 1) (1)

Greedy(x) = µ̂(x) (2)
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Greedy is a naive method where the top-scoring molecules ranked by the model are always selected
for evaluation, without taking into account uncertainty.

EpsilonGreedy(x) =

{
µ̂(x), with probability 1− ϵ
U(0, 1), with probability ϵ

(3)

Epsilon greedy is analogous to the greedy strategy except that it makes a random selection from the
library with probability ϵ. In experiments, we report, a value of ϵ = 0.1 was used.

UCB(x) = µ̂(x) + βσ̂(x) (4)

The upper confidence bound acquisition policy is an ‘optimistic’ method that selects molecules based
on their potential to yield optimal values. The utility of acquiring a given molecule is calculated
by summing the predicted mean value with its predicted standard deviation. It attempts to balance
exploration and exploitation by enabling molecules to be selected that have moderate mean predicted
scores but large standard deviations. The β parameter can be adjusted to more heavily weight the
standard deviation term. In the experiments we report, a value of β = 2 was used.

PI(x) =


Φ(z), σ̂(x) > 0

1, σ̂(x) = 0 and γ(x) > 0

0, σ̂(x) = 0 and γ(x) <= 0

(5)

The probability of improvement acquisition policy aims to select the molecule that has the highest
probability of improving upon the currently identified best score. The PI score for a molecule is
computed utilizing the standard deviation associated with that molecule to compute the amount of
probability mass that molecule has above the current best solution. It is important to note that PI does
not consider the magnitude of the improvement.

EI(x) =

{
γ(x)Φ(z) + σ̂(x)ϕ(z), σ̂ > 0

γ(x), σ̂ = 0
(6)

The expected improvement policy is analogous to the PI policy but considers the magnitude of
the improvement. The value is computed for a molecule by calculating the expected value of the
probability density that the molecule has above the current best solution. The EI method can be
augmented with a parameter that can encourage more exploration.

For PI and EI: γ(x) := µ̂(x)− f∗ + ξ; z(x) := γ(x)
σ̂(x) ; µ̂(x) and σ̂2 are the surrogate models predicted

mean and uncertainties for point x, respectively. Φ and ϕ are the CDF and PDF of the standard
normal distribution and f∗ is the current maximum objective function value. In experiments we report
using EI and PI, we use a value of ξ = 0.01.

5.2.2 Random Forest

Random forest regression is an ensemble learning technique that utilizes a set of decision trees. Each
individual tree is fit with a random subset of the training features and observations in an attempt to
de-correlate the trees [SLT+03]. During inference, uncertainty estimates can be derived by examining
the mean value of the ensemble of trees and the variance of the predictions from the ensemble.
Chemical libraries were featurized with molecular fingerprints. There are a variety of molecular
fingerprints that differ in their specific implementations, however, they all can be broadly understood
as representing the presence or absence of a specific sub-structure within a molecule into a vector of
fixed length. In this work, we utilized the Morgan Fingerprint with a bit length of 2048 and a radius
of 3. The RF surrogate used was fit with n_estimators = 100, max_depth = 8.

5.2.3 D-MPNN

In this work, we utilized the directed message-passing neural network (D-MPNN) implemented by
[YSJ+19]. MPNNs treat the molecule as a connected graph and construct a feature vector for that
graph, de-novo. This is in contrast to fixed fingerprints which do not have the flexibility to adjust
their embeddings. Broadly, MPNNs operate in two stages, the message-passing phase and the readout
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Figure 6: Ranking performance on cMet enrichment test set with 5 known actives. Enrichment using
a standard docking workflow performs well and is improved further using AQFEP.

phase. In the message-passing phase, “messages” are passed between atoms and/or bonds and their
direct neighbors, and incoming messages are used to update the “hidden state” of each atom and/or
bond. The message passing phase is repeated over multiple (e.g., 3) iterations, at which point the
hidden states of each atom are aggregated (e.g., summed) to produce a molecule-level feature vector.
By training this model at the same time as an FFNN operating on the feature vector, MPNNs are able
to learn a task-specific representation of an input molecular graph. For more details on the D-MPNN
model and the specific implementation of this architecture, we refer the reader to [YSJ+19].

The message-passing neural network used here utilized standard settings from the molecule model
class in the Chemprop library [YSJ+19]: messages passed on directed bonds, messages subjected to
ReLU activation, a learned encoded representation of dimension 300, and the output of the message
passing phase fully connected to an output layer of size 1. The model was trained using the Adam
optimization algorithm, a Noam learning rate scheduler (initial, maximum, and final learning rates of
0.1, 0.001, and 0.0001, respectively), and a root-mean-squared error loss function over 50 epochs
with a batch size of 50. For more details on the Noam learning rate scheduler, see [VSP+23]. The
model was trained with early stopping tracking the validation score using a patience value of 10.
When uncertainty values were needed for metric function calculation, an MVE model based on the
work done by [HSY+20] was used. This model featured an output size of two and was trained using
the loss function defined by Nix and Weigend [NW94].

5.2.4 GraphDock

GraphDock is composed of 5 layers of E(3)GNN, with 100 hidden dimensions, and the same
parameters for chemical prediction tasks specified in [SHW21]. Node and edge representations first
pass through separate feed-forward neural networks, each with hidden dimensions 32. The output
graph is pooled to give an embedding with 64 dimensions (See figure 1).

The graph featurization step is the same as is implemented in the Chemprop library [YSJ+19],
in addition to the 3D coordinates, and the identity of a node (atom in protein or in ligand). The
GraphDock model was trained using the Adam optimization algorithm with a batch size of 64 and
a fixed learning rate of 5e-4 for 500 epochs. Early stopping was used to prevent over-fitting with a
patience of 50.

5.3 cMet Virtual Screen

A comparison of the virtual screening enrichment between the Vinardo scoring function and AQFEP
is provided in Fig. 6.
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surrogate acq mean std
ei 242.8 19.7

epsgreedy 314.0 5.9
gdock greedy 310.6 8.2

pi 234.6 18.5
ucb 322.0 7.3
ei 247.0 5.0

epsgreedy 259.6 11.2
mpn greedy 267.5 5.0

pi 209.7 27.4
ucb 242.7 10.0
ei 239.3 16.9

epsgreedy 248.6 9.8
rf greedy 253.2 13.5

pi 202.7 35.0
ucb 213.4 10.1

top dockers top dockers 73.0 NA
random random 58.6 5.9

Table 4: Average top-k performance on GLP1R retrospective test with a 2% acquisition size as
measured by the average number (n) of top smiles evaluated in the pre-computed library across 10
experiment runs. Bolded numbers indicate the best performing method within each surrogate model.

surrogate acq mean std
theoretical max NA 0.130 NA

ei 0.013 0.028
epsgreedy 0.072 0.021

gdock greedy 0.079 0.028
pi 0.020 0.032

ucb 0.060 0.021
ei 0.124 0.021

epsgreedy 0.124 0.021
mpn greedy 0.130 0.000

pi 0.098 0.046
ucb 0.130 0.000
ei 0.111 0.044

epsgreedy 0.118 0.041
rf greedy 0.092 0.063

pi 0.072 0.057
ucb 0.107 0.044

top dockers top dockers 0.000 NA
random random 0.000 0.000

Table 5: Average hit-rate performance on GLP1R retrospective test

5.4 GLP1R Retrospective Test

The average top-k performance on GLP1R retrospective test is included in Table 4. The average hit
rate for each of the surrogates and acquistion functions can be found in Table 5

5.4.1 Prospective Screen - Novel Protein Target

Below we illustrate changes in the median AQFEP score across tranches of our active-learning virtual
screening workflow applied to a novel protein target.
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Figure 7: Model guided search results in profiling of compounds with better (lower) AQFEP scores
across tranches against a novel protein target. In total 30,108 compounds were profiled which is
comprised of 7,542 compounds from Random selection, 8,930 from Top Dockers selection, and
13,636 selected by a greedy D-MPNN surrogate model.
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