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Abstract

Developing an effective molecular generation framework even with a limited num-
ber of molecules is often important for its practical deployment, e.g., drug discovery,
since acquiring task-related molecular data requires expensive experimental costs.
To tackle this issue, we introduce Hierarchical textual Inversion for Molecular
generation (HI-Mol), a novel data-efficient molecular generation method. HI-Mol
is inspired by a recent textual inversion technique in the visual domain that achieves
data-efficient generation via simple optimization of a new single text token of a
text-to-image generative model. However, we find that its naïve adoption fails
for molecules due to their complicatedly structured nature. Hence, we propose a
hierarchical textual inversion scheme based on introducing low-level tokens that
are selected differently per molecule in addition to the original single text token in
textual inversion to learn common concepts. We then generate molecules using a
pre-trained text-to-molecule model by interpolating the low-level tokens. Extensive
experiments demonstrate the superiority of HI-Mol with notable data-efficiency.
For instance, on QM9, HI-Mol outperforms the prior state-of-the-art method with
50× less training data. We also show the efficacy of HI-Mol in various applications,
including molecular optimization and low-shot molecular property prediction.

1 Introduction

Finding novel molecules has been a fundamental yet crucial problem in chemistry [1, 2] due to its
strong relationship in achieving important applications, such as drug discovery [3, 4]. However,
generating molecules poses a challenge due to their highly structured nature and the vast size of the
input space [5]. To tackle this issue, several works have considered training deep generative models
to learn the molecule distribution using large molecular datasets [6, 7]. This is inspired by the recent
advances of generative models in other domains, e.g., images and videos [8, 9], in learning large and
complex data distribution. Intriguingly, such deep molecular generative methods have demonstrated
reasonable performance [6, 10, 11] on the large-scale molecular generation benchmarks [12, 13] in
finding chemically valid and novel molecules, showing great potential to solve the challenge.

Unfortunately, existing molecular generation frameworks often fail in limited data regimes [14]. This
restricts the deployment of existing approaches to practical scenarios, because task-related molecular
data for the real-world applications are mostly insufficient to train molecular generative models. For
example, the drug-likeness of each candidate molecule should be verified through years of extensive
wet experiments and clinical trials [15, 16]. This time-consuming and labor-intensive data acquisition
process of new task-related molecules [17] limits the number of available training data for a model to
learn the desired molecule distribution. Thus, it is often crucial to develop a data-efficient molecular
generation framework, yet this direction has been overlooked in deep molecular generation [14].
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Figure 1: Overview of our HI-Mol framework. (1) Hierarchical textual inversion: we encode the
features of molecules as multi-level token embeddings. (2) Embedding interpolation-based sampling:
we sample novel molecules using interpolation of low-level token embeddings.

Meanwhile, recent works in text-to-image generation have explored the problem of low-shot (or
personalized) generation using the power of large pre-trained models trained on a massive amount
of data [18, 19]. In particular, Gal et al., [20] achieve this by proposing a textual inversion using
pre-trained text-to-image diffusion models—given a small set of images, they show that common
concepts among them can be learned effectively by optimizing a single text token embedding under
the frozen generative model, where the learned token can be used for the desired generation.

Considering the recent success of large-scale pre-trained text-to-molecule models [21], what we ask
in this paper is: can textual inversion be exploited to enable data-efficient molecular generation
with pre-trained text-to-molecule models? However, we find that naïve adoption of textual inversion
methods fails to achieve the goal, due to the highly complicated and structured nature of molecules.
To enjoy the effectiveness of textual inversion for our problem of data-efficient molecular generation,
we suggest considering the unique aspects of molecular data carefully in its adoption.

Contribution. We introduce a novel data-efficient molecular generation framework, coined
Hierarchical textual Inversion for Molecular generation (HI-Mol). Specifically, HI-Mol is composed
of two components (see Figure 1 for the overall illustration):

• Hierarchical textual inversion: We propose a molecule-specialized textual inversion framework
to capture the hierarchical information of molecules [22]. In contrast to textual inversion for
the visual domain that optimizes a single shared token on given data, we design multi-level
tokens for the inversion so that some of the low-level tokens are selected differently per molecule.
Thus, the shared token learns the common concept among molecules and low-level tokens learn
molecule-specific features. This low-level token selection does not require any specific knowledge
of each molecule and can be achieved completely in an unsupervised manner.

• Embedding interpolation-based sampling: We present a molecule sampling scheme which utilizes
the multi-level tokens optimized in the inversion stage. Our main idea is to utilize low-level tokens
in addition to the shared token for molecular generation. In particular, we consider using the
interpolation of two different low-level token embeddings for generation. The mixing approach is
designed to utilize the information of given molecules extensively, and thus to effectively alleviate
the issue of the limited number of molecules that lie in the target distribution.

We extensively evaluate our method by designing several data-efficient molecular generation tasks.
In the HIV dataset [23], measured by Frechet ChemNet Distance (FCD [24]; lower is better) and
Neighborhood Subgraph Pairwise Distance Kernel MMD (NSPDK [25]; lower is better) metrics,
our method improves the prior arts as 20.2 → 16.6, and 0.033 → 0.019, respectively. Our method
also achieves much better active ratio (higher is better) by improving the previous state-of-the-art
as 3.7 → 11.4. We also demonstrate the strong data-efficiency of HI-Mol. For instance, on QM9
[12], our method already outperforms the previous state-of-the-art methods, e.g., STGG [6] by 0.585
→ 0.434 in FCD, with 50× less training data. We also validate the superiority of HI-Mol on the
molecular optimization for penalized octanol-water partition coefficient on the ZINC dataset [26] and
the low-shot molecular property prediction on the datasets in the MoleculeNet benchmark [23].
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2 Related work

Molecular generation. Most molecular generation methods fall into three categories based on
different representations of molecules. First, there exist many attempts [7, 14, 27, 28, 29, 30, 31, 32,
33] to formalize molecular generation as a graph generation problem by representing each molecule
as an attributed graph. Next, there are several fragment-based methods [10, 11, 34], which define a
dictionary of chemically meaningful fragments, e.g., functional groups. Each molecule is represented
as a tree structure of dictionary elements and the distribution of connected fragments is then modeled.
Finally, there are many approaches [6, 35, 36] that utilize the Simplified Molecular-Input Line-Entry
System [SMILES, 37] representation to write molecules as strings and learn the distribution in this
string space. Among them, some recent works have tried to train large-scale text-to-molecule models;
they observe that fine-tuning large language models in natural language domain [38] using molecular
data interpreted as SMILES representation can result in good text-to-molecule models [21, 39]. Our
method takes the string-based approach based on the utilization of recent large-scale text-to-molecule
models that use SMILES representation, where we carefully design a hierarchical textual inversion
method for molecules to tackle under-explored data-efficient molecular generation.

Low-shot generation. There have been substantial efforts in the generative model literature to
design a low-shot generation framework for generating new samples from a given small number
of data. In particular, in the image domain, many approaches have proposed some adaptation
or fine-tuning methods of the pre-trained generative models [18, 40, 41, 42], mostly focusing on
generative adversarial networks [GAN, 43]. Despite their efforts, exploiting knowledge from pre-
trained generative models for a low-shot generation had remained a challenge, in contrast to the great
progress in other tasks, e.g., low-shot classification [44]. Intriguingly, recent works on large-scale
text-to-image diffusion models [21, 39] have surprisingly resolved this challenge, even enabling
“personalization” of the model at a few in-the-wild images through very simple optimization schemes
that update only a few parameters [19, 20, 45]. In particular, textual inversion [20] exhibits that the
personalization of large-scale text-to-image diffusion models can be achieved even with a simple
optimization of an additional single text token without updating any pre-trained model parameters.

In contrast to the recent advances of low-shot generation in the image domain, developing a low-shot
(or data-efficient) molecular generation method is under-explored despite its practical importance
[46, 14]. Our method tackle this problem by designing a molecule-specific textual inversion method
using the recent large-scale text-to-molecule models. Specifically, due to our unique motivation to
consider “hierarchy” of molecular structures [22], our method effectively learns the distribution of
diverse molecular structures of low-shot molecules, while the applications of prior works, e.g., Guo
et al., [14], are limited to structurally similar molecules such as monomers and chain-extenders.

3 HI-Mol: Hierarchical textual inversion for molecular generation

In this section, we explain our method, coined HI-Mol, in detail. In Section 3.1, we provide a brief
overview of our problem of interest and the main idea to solve the challenge. In Section 3.2, we
provide descriptions of textual inversion and molecular language models to explain our method. In
Section 3.3, we provide a component-by-component description of our method.

3.1 Problem description and overview

Problem description. We formulate our problem of data-efficient molecular generation as follows.
Consider a given molecular dataset M := {xn}Nn=1, where each molecule xn is drawn from an
unknown task-related molecular distribution p(x|c). Here, c represents the common chemical
concepts among molecules in the dataset for the target task, e.g., blood-brain barrier permeability
or ability to inhibit HIV replication. We aim to learn a model distribution pmodel(x) that matches
p(x|c), where the number of molecules N in the dataset is small, e.g., N = 691 in the BACE dataset.

Overview. To solve this problem, we take the recent approach of textual inversion [20] from the text-
to-image diffusion model literature—a simple yet powerful technique in low-shot image generation
that learns a common concept in given images as a token in text embedding space. Similarly, we aim
to learn the common concepts of molecules as text tokens and use them for our target of data-efficient
generation. However, exploiting this approach for our goal faces several challenges, mainly due to
the unique characteristics of molecules differentiated from images. First, it is yet overlooked which of
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the large-scale model for molecules is beneficial to achieve textual inversion for the given molecules,
like the success of text-to-image diffusion models in achieving successful inversion in the image
domain. Moreover, molecules have a very different structural nature from images—unlike images,
molecules with similar semantics often have entirely different structures (see Figure 2), making it
difficult to simply learn the common concept as a single text token. Our contribution lies in resolving
these challenges by adopting molecule-specific priors into the molecular generation framework to
enjoy the power of textual inversion techniques to achieve data-efficient molecular generation.

3.2 Preliminaries

Textual inversion. Recent text-to-image generation methods have proposed textual inversion [20],
which aims to learn a common concept c, i.e., the distribution p(x|c), from a small set of images
and use it for the concept-embedded (or personalized) generation. To achieve this, they optimize
a single text embedding of a token [S∗] shared among images to learn c using a pre-trained frozen
text-to-image diffusion model ft2i. Specifically, they put [S∗] with a short text description, e.g.,
“A photo of [S∗]”, as the text prompt to ft2i, and then optimize this token embedding using given
images with the exact same training objective that is used for training ft2i.

Molecular language model. Following the recent progress in large language models [38, 47, 48],
there exist several attempts to train molecular language models [39, 49, 50, 51]. Specifically, these
works exploit popular language model architectures to have pre-trained models for molecules, based
on the SMILES [37] representation SMILES(x) that interprets a given molecule x as a string. In
particular, MolT5 [21] proposes to fine-tune a pre-trained large-scale text-to-text language model,
T5 [38], with large-scale molecular SMILES representations and text description-SMILES pair data
to have a text-to-molecule model. Notably, it results in a highly effective pre-trained model for
molecules, demonstrating superior performance across on text-to-molecule generation tasks. Inspired
by its success, we use the Large-Caption2Smiles model trained with this MolT5 approach to design
molecule-specific textual inversion framework for our goal of data-efficient molecular generation.

3.3 Detailed description of HI-Mol

Hierarchical textual inversion. We first propose a molecule-specific textual inversion to learn the
desired molecular distribution. Unlike prior textual inversion that assumes a single shared token [S∗]
only, we propose to use “hierarchical” tokens [S∗], {[I∗k ]}Kk=1, {[D∗

n]}Nn=1 (with parametrizations
θ := (s, {ik}Kk=1, {dn}Nn=1)) by introducing additional intermediate tokens {[I∗k ]}Kk=1 and detail
tokens {[D∗

n]}Nn=1 (with K < N ). Such intermediate and detail tokens are selected differently for
each molecule and learn cluster-wise features and molecule-wise features, respectively, enabling to
capture the hierarchical, e.g., high-level and low-level, semantics of the molecular dataset.

To learn these hierarchical tokens, we consider a frozen text-to-molecule model f , e.g., Large-
Caption2Smiles [21], to apply our proposed hierarchical textual inversion objective. Specifically, we
optimize θ by minimizing the following objective on the given molecular dataset M:

L(θ;xn) := min
k∈[1,K]

LCE

(
softmax

(
f(“The molecule is a [S∗][I∗k ][D

∗
n]”)

)
, SMILES(xn)

)
, (1)

where LCE denotes cross-entropy loss and SMILES(xn) is a SMILES [37] string interpretation of xn.
Thus, after training, each xn is interpreted as three tokens [S∗][I∗cn ][D

∗
n], where each intermediate

token index cn ∈ [1,K] (for 1 ≤ n ≤ N ) is chosen during optimization to minimize the training
objective L. Note that the selection of [I∗k ] is achieved in an unsupervised manner so that it does not
require any specific information about each of the given molecules. Intriguingly, we find this simple
selection scheme of [I∗k ] can learn some of the informative cluster-wise features although we have
not injected any prior knowledge of a given molecular data (see Figure 2 for an example).

Our “multi-level” token design is particularly important for the successful inversion with molecules
because molecules have different nature from images that are typically used in the existing textual
inversion method. Image inputs in the conventional textual inversion are visually similar, e.g., pictures
of the same dog with various poses, whereas molecules often have entirely different structures even if
they share the common concept, e.g., ability on the blood-brain membrane permeability [23]. This
difference makes it difficult to learn the common concept as a simple single token; we mitigate it
by adopting hierarchy in the inversion scheme by incorporating the principle of chemistry literature
highlighting that molecular data can be clustered hierarchically [22].
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Table 1: Quantitative results of the generated molecules on the three datasets (HIV, BBBP, BACE)
in the MoleculeNet benchmark [23]. We mark in Grammar if the method explicitly exploits the
grammar of molecular data and thus yields a high Valid. score. The Active. score is averaged
over three independently pre-trained classifiers. We compute and report the results using the 500
non-overlapping generated molecules to the training dataset. We set the highest score in bold. ↑ and
↓ indicate higher and lower values are better (respectively) for each metric.

Dataset Method Class Grammar Active. ↑ FCD ↓ NSPDK ↓ Valid. ↑ Unique. ↑ Novelty ↑

HIV

GDSS [7] Graph ✗ 0.0 34.1 0.080 69.4 100 100
DiGress [33] Graph ✗ 0.0 26.2 0.067 17.8 100 100
JT-VAE [10] Fragment ✓ 0.0 38.8 0.221 100 25.4 100
PS-VAE [34] Fragment ✓ 3.7 21.8 0.053 100 91.4 100
MiCaM [52] Fragment ✓ 3.4 20.4 0.037 100 81.6 100
CRNN [3] SMILES ✗ 3.3 29.7 0.064 30.0 100 100
STGG [6] SMILES ✓ 1.6 20.2 0.033 100 95.8 100
HI-Mol (Ours) SMILES ✗ 11.4 19.0 0.019 60.6 94.1 100
HI-Mol (Ours) SMILES ✓ 11.4 16.6 0.019 100 95.6 100

BBBP

GDSS [7] Graph ✗ 0.0 35.7 0.065 88.4 99.2 100
DiGress [33] Graph ✗ 8.2 17.4 0.033 43.8 94.6 100
JT-VAE [10] Fragment ✓ 80.6 37.4 0.202 100 10.8 100
PS-VAE [34] Fragment ✓ 84.9 17.3 0.039 100 91.6 100
MiCaM [52] Fragment ✓ 82.0 14.3 0.021 100 89.4 100
CRNN [3] SMILES ✗ 88.8 20.2 0.026 54.0 100 100
STGG [6] SMILES ✓ 89.1 14.4 0.019 99.8 95.8 100
HI-Mol (Ours) SMILES ✗ 94.4 11.2 0.011 78.8 92.9 100
HI-Mol (Ours) SMILES ✓ 94.6 10.7 0.009 100 94.2 100

BACE

GDSS [7] Graph ✗ 9.1 66.0 0.205 73.4 100 100
DiGress [33] Graph ✗ 21.1 26.7 0.102 16.4 100 100
JT-VAE [10] Fragment ✓ 40.4 49.1 0.304 100 13.0 100
PS-VAE [34] Fragment ✓ 57.3 30.2 0.111 99.8 75.6 100
MiCaM [52] Fragment ✓ 56.2 18.5 0.060 100 64.2 100
CRNN [3] SMILES ✗ 79.0 21.7 0.066 38.0 100 100
STGG [6] SMILES ✓ 42.9 17.6 0.053 100 94.8 100
HI-Mol (Ours) SMILES ✗ 81.0 16.4 0.052 71.0 69.9 100
HI-Mol (Ours) SMILES ✓ 80.4 14.0 0.039 100 74.4 100

Embedding interpolation-based sampling. Given the learned distribution from hierarchical textual
inversion, we propose a strategy to sample novel molecules from the distribution. One can consider
similar sampling schemes used in existing textual inversion for images. For example, [S∗] can be
used for generating sample from our target distribution by putting text prompts including [S∗], e.g.,
“A similar chemical of [S∗]”, into the molecular language model f . However, we find that such a
simple strategy does not work well in molecular generation (see Table 6), which might be due to the
complex structured nature of molecules, and relatively less description-molecule pairs for training
molecular language models than training large-scale text-to-image generative models.

To alleviate this issue, we propose to utilize the learned intermediate tokens {[I∗k ]}Kk=1 and detail
tokens {[D∗

n]}Nn=1 to sample from our target distribution. We consider the interpolation of each of
intermediate tokens and detail tokens, i.e., we incorporate the hierarchy information of the molecules,
which is obtained in our textual inversion, in the sampling process. Specifically, we sample a novel
molecule with random molecule indices i, j sampled uniformly from [1, . . . , N ] and a coefficient λ
drawn from a pre-defined prior distribution p(λ) (see Appendix A for our choice of p(λ)):(̄

i, d̄
)
:= λ

(
ici ,di

)
+ (1− λ)

(
icj ,dj

)
, (2)

x := f
(
“A similar chemical of [S∗][Ī∗][D̄∗]”

)
,

where [Ī∗], [D̄∗] indicate that we pass interpolated embeddings ī, d̄ to f , respectively, and cn ∈ [1,K]
is an index of the intermediate token of a given molecule xn, i.e., an intermediate token index
that minimizes the training objective Eq. (1).1 This additional consideration of low-level tokens
{[I∗k ]}Kk=1, {[D∗

n]}Nn=1 (as well as [S∗]) encourages the sampling to exploit the knowledge from
given molecular dataset extensively, mitigating the issue of scarcity of target molecules that lie in
the distribution we want to learn and thus enables generating high-quality molecules. We provide
qualitative analysis on our embedding interpolation-based sampling scheme in Appendix I.

1We simply set the number of clusters K, as 10 in our experiments. Please see Appendix E for details.
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Table 2: Qualitative results of the generated molecules on the two datasets (HIV, BBBP) of the
MoleculeNet benchmark [23]. We visualize the generated molecules from each method that has the
maximum Tanimoto similarity with a given anchor molecule. We report the similarity below each
visualization of the generated molecule. We set the highest similarity in bold.

Dataset DiGress [33] MiCaM [52] STGG [6] HI-Mol (Ours) Train

HIV

0.154 0.146 0.157 0.326

BBBP

0.238 0.247 0.246 0.505

Table 3: Quantitative results on the QM9 dataset [12]. We mark in Grammar if the method explicitly
exploits the grammar of molecular data and thus yields a high Valid. score. Following the setup of
[7], we report the results using 10,000 sampled molecules. We denote the scores drawn from [32] and
[6] with (*) and (†), respectively. We mark (-) when the score is not available in the literature. We set
the highest score in bold. ↑ and ↓ indicate higher and lower values are better (respectively) for each
metric. For our method, we report the ratio of the number of samples of the dataset used for training.

Method Class Grammar FCD ↓ NSPDK ↓ Valid. ↑ Unique. ↑ Novelty ↑

CG-VAE† [36] Graph ✓ 1.852 - 100 98.6 94.3
GraphAF [27] Graph ✗ 5.268 0.020 67 94.5 88.8
MoFlow [28] Graph ✗ 4.467 0.017 91.4 98.7 94.7
EDP-GNN [29] Graph ✗ 2.680 0.005 47.5 99.3 86.6
GraphDF [30] Graph ✗ 10.82 0.063 82.7 97.6 98.1
GraphEBM [31] Graph ✗ 6.143 0.030 8.22 97.8 97.0
GDSS [7] Graph ✗ 2.900 0.003 95.7 98.5 86.3
GSDM∗ [32] Graph ✗ 2.650 0.003 99.9 - -
STGG† [6] SMILES ✓ 0.585 - 100 95.6 69.8

HI-Mol (Ours; 2%) SMILES ✓ 0.430 0.001 100 76.1 75.6
HI-Mol (Ours; 10%) SMILES ✓ 0.398 0.001 100 88.3 73.2

4 Experiments

We extensively verify the superiority of HI-Mol by considering various data-efficient molecular
generation scenarios. In Section 4.1, we explain our experimental setup. In Section 4.2, we present
our main molecular generation results on MoleculeNet and QM9. In Section 4.4, we conduct some
analysis and an ablation study to validate the effect of components of our method. In Section 4.3, we
present results on additional applications, i.e., optimization and low-shot property prediction. We
provide further ablation study and additional experimental results in Appendix E and F, respectively.

4.1 Experimental setup

Datasets. Given the lack of benchmarks designed specifically for data-efficient molecular generation,
we propose to use the following datasets for evaluating molecular generation methods under our
problem setup. First, we consider the three datasets in the MoleculeNet [23] benchmark (originally
designed for activity detection), HIV, BBBP, and BACE, which have a significantly small number
of molecules than popular molecular generation benchmarks [53, 54], e.g., BACE includes only
691 active molecules. Considering only the active molecules in each dataset, we construct tasks to
generate novel molecules, where they should share the same chemical concept, e.g., drug-likeness on
the HIV disease or blood-brain membrane permeability, of the given dataset.

Moreover, we also utilize the QM9 dataset [12] for our experiments to show the data-efficiency
of HI-Mol. Specifically, we train our method with an extremely small subset of the entire QM9
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Property of the cluster: Containing long carbon chain Property of the cluster: Containing sulfonlyl benzene on sides

Figure 2: Visualizations of molecules in two clusters obtained from the unsupervised clustering in
Eq. (1) on the HIV dataset [23]. We mark the common substructures as dotted lines.

training split, e.g., 2%, where other baseline methods are trained with the whole training split (105k
molecules). We provide more detailed explanation about the datasets in Appendix B.

Evaluation setup. To evaluate the quality of the generated molecules, we consider six metrics that
represent diverse aspects critical to the evaluation of the generated molecules, e.g., similarity to the
target molecules, uniqueness, novelty. Our evaluation incorporates some well-known metrics, such as
those used in [7], as well as introducing a new metric “Active ratio”:

• Fréchet ChemNet Distance (FCD) [24]: Metric for measuring the distance between the source
distribution and the target distribution using pre-trained ChemNet.

• Neighborhood Subgraph Pairwise Distance Kernel MMD (NSPDK) [25]: Another metric for
measuring the gap between source and the target distributions, based on algorithmic computation
using graph-based representations of molecules.

• Validity (Valid.): The ratio of the generated molecules that have the chemically valid structure.

• Uniqueness (Unique.): Diversity of the generated molecules based on evaluating the ratio of
different samples over total valid molecules earned from the generative model.

• Novelty: Fraction of the valid molecules that are not included in the training set.

• Active ratio2 (Active.): Our proposed metric, measuring the ratio of the valid generated molecules
that are active, i.e., satisfying the target property for the relevant task. See Appendix C for details.

Baselines. We mainly consider the following methods for evaluation: GDSS [7], DiGress [33], DEG
[14], JT-VAE [10], PS-VAE [34], MiCaM [52], CRNN [3], and STGG [6]. For evaluation on QM9,
we also consider GraphAF [27], GraphDF [30], MoFlow [28], EDP-GNN [29], and GraphEBM [31],
following the recent works [7, 32]. We provide more details of the baselines in Appendix D.

4.2 Main results

Generation on MoleculeNet. Table 1 summarizes the quantitative results of the generated molecules
on the HIV, BBBP, and BACE datasets in the MoleculeNet benchmark [23]. Our method consistently
outperforms other generation methods in terms of Active ratio, FCD, and NSPDK scores on all three
datasets. We note that the improvements of these scores are particularly crucial for the deployment of
the molecular generation method. For example, the superior Active ratio and FCD of HI-Mol, e.g.,
3.7 → 11.4 and 20.2 → 19.0 on the HIV dataset, respectively, indicate the effectiveness of HI-Mol
in generating more faithful molecules which lies in the target distribution. We provide qualitative
results in Table 2 by providing some of the generated molecules from the each dataset. One can
observe that the generated molecules of HI-Mol capture several crucial common substructures, e.g.,
many ester groups, while introducing the novel components, e.g., 4-membered ring.

2For reliable evaluation with our metric, we avoid the overlap between the generated molecules and the
training data used for generation methods by ignoring the molecule if it is contained in this dataset. Hence, the
Novelty score is 100 for all MoleculeNet experiments since all samples are different from the training set (see
Table 1 for an example). We only consider valid generated molecules to calculate this score.
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Table 4: Results of PLogP maximization task.
We report the top-3 property scores denoted by
1st, 2nd, and 3rd. The baseline scores are
drawn from [6].

PlogP

Method 1st 2nd 3rd

GVAE [55] 2.94 2.89 2.80
SD-VAE [56] 4.04 3.50 2.96
JT-VAE [10] 5.30 4.93 4.49
MHG-VAE [57] 5.56 5.40 5.34
GraphAF [27] 12.23 11.29 11.05
GraphDF [30] 13.70 13.18 13.17
STGG [6] 23.32 18.75 16.50

HI-Mol (Ours; 1%) 24.67 21.72 20.73

Table 5: Average ∆ROC-AUC of the low-shot
property prediction tasks with 20 random seeds.

Dataset Method 16-shot 32-shot

HIV

DiGress [33] -2.30 -2.67
MiCaM [52] 1.02 0.69
STGG [6] 0.53 -0.47

HI-Mol (Ours) 2.35 2.16

BBBP

DiGress [33] 1.73 0.97
MiCaM [52] 1.91 1.78
STGG [6] 1.85 1.76

HI-Mol (Ours) 2.73 2.64

BACE

DiGress [33] -0.60 -0.91
MiCaM [52] -0.65 -1.11
STGG [6] 2.34 2.01

HI-Mol (Ours) 3.53 3.39

We also propose a simple algorithm to modify the generated invalid SMILES by correcting invalid
patterns3 without a computational overhead. By applying this algorithm, we convert all invalid
SMILES to valid ones, i.e., Validity becomes 100. In particular, the modified molecules further
improves the overall metrics, e.g., FCD by 19.0 → 16.6 and 11.2 → 10.7 in the HIV and BBBP
dataset, respectively. This indicates the modified SMILES indeed represent molecules from our
desired distribution and further highlights the superior quality of our generated molecules.

Generation on QM9. In Table 3, we report the quantitative results on QM9 [12]. Here, we train
our method with a limited portion of data, e.g., 2% and 10%, and then compare the results with the
baselines that are trained with the entire dataset. Our model shows strong data-efficiency: only with a
2% subset of the training data, our method already outperforms the state-of-the-art baseline, STGG
[6], by 0.585 → 0.430 in FCD. Utilizing a 10% subset further improves the performance of HI-Mol,
reducing the FCD by 0.430 → 0.398. In particular, compared with STGG, HI-Mol not only improves
the FCD score but also shows a better Novelty score, which validates the capability of HI-Mol to find
novel molecules from the target distribution. We provide further experimental results in Appendix G.

4.3 Applications of HI-Mol

𝛾 = 5, PlogP = 5.06 𝛾 = 6, PlogP = 5.96 𝛾 = 7, PlogP = 6.59

Figure 3: Visualizations of the generated
molecules with condition γ. The maximum
PLogP among the training molecules is 4.52.

Molecular optimization. We demonstrate the ef-
fectiveness of HI-Mol in molecular optimization,
mainly following the experimental setup of [6].
We train a conditional molecular generative model
pmodel(x|γ) under the HI-Mol framework where γ
denotes the penalized octanol-water partition coef-
ficient (PLogP). Then, we sample with a high γ to
obtain the molecules with high PLogP. In Table 4, our
HI-Mol generates molecules with considerably high
PLogP even when trained with only 1% of the entire
training dataset. Here, we remark that solely maximizing the molecular property (such as PLogP)
may generate unrealistic molecules [6], e.g., unstable or hard-to-synthesize (see Appendix K). To
address this and highlight the practical application of our HI-Mol framework, we further show the
model’s capability to generate molecules with the desired PLogP. In Figure 3, HI-Mol generates
realistic molecules with the target PLogP, even when the desired condition γ is unseen in the training
molecules. The overall results show that our HI-Mol exhibits a huge potential for the real-world
scenarios where we aim to generate molecules with a specific target property.

3For example, we modify the invalid SMILES caused by the unclosed ring, e.g., C1CCC → CCCCC. Please see
Appendix H for detailed algorithm. We mark in Grammar column when modification is applied for evaluation.
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Table 6: Ablation of the components of hierarchical textual inversion on the QM9 dataset [12] with
2% subset. We report the results using 10,000 sampled molecules.

Training prompt FCD ↓ NSPDK ↓ Valid. ↑ Unique. ↑ Novelty ↑
The molecule is a [S∗] 7.913 0.041 96.2 19.3 39.5
The molecule is a [S∗][D∗

n] 0.486 0.002 93.8 70.8 72.3
The molecule is a [S∗][I∗cn ][D

∗
n] 0.434 0.001 90.7 75.8 73.5

Low-shot molecular property prediction. In this section, we show that the generated molecules by
HI-Mol can be utilized to improve the performance of classifiers for the low-shot molecular property
prediction. Here, we collect low-shot molecules by a random subset from the MoleculeNet benchmark
[23] and generate molecules via molecular generative models for each label. Then, we train the
classifier with both (1) the original low-shot molecules and (2) the generated molecules via the
molecular generative model. In Table 5, we report the ∆ROC-AUC 4 score for each generative model.
The results show that our HI-Mol consistently outperforms the prior methods in various low-shot
molecular property prediction tasks. This verifies the superior ability of HI-Mol to learn the concept,
e.g., activeness and in-activeness, of each label information with a limited number of molecules. In
practical scenarios, where the label information is hard to achieve, our HI-Mol can indeed play an
important role to improve the classifier. We provide experimental details in Appendix L.

4.4 Analysis

Effect of intermediate tokens. Recall that we have introduced intermediate text tokens {[I∗k ]}Kk=1,
which are selected in an unsupervised manner during the hierarchical textual inversion to learn some
of the cluster-wise properties included in given molecules. To validate the effect of our text token
design, we visualize the clustering results in Figure 2 by providing groups of the molecules that have
the same intermediate token. As shown in this figure, molecules are well grouped according to their
common substructures, e.g., a long carbon chain or sulfonyl benzene groups. Such a learning of
cluster-wise low-level semantics is indeed beneficial in molecular generation, since molecules often
share the concept, e.g., molecular property, even when they have large structural difference.

Ablation on hierarchical tokens. To validate the effect of each token in our proposed hierarchical
textual inversion, we perform an ablation study by comparing the results with our method where
some of the tokens are excluded from the overall framework. Specifically, we compare the generation
performance of the following three variants: (1) using the shared token [S∗] only, (2) using [S∗]
and the detail tokens [D∗

n], and (3) using all three types of tokens (HI-Mol). Note that for (1), it is
impossible to apply our interpolation-based sampling; hence, we use temperature sampling instead
based on the categorical distribution from a molecular language model with temperature τ = 2.0.
We provide this result in Table 6: as shown in this table, introducing each of the additional tokens
successively improves most of the metrics, while maintaining the Validity metric as well.

5 Conclusion

We propose a new framework for data-efficient molecular generation, called Hierarchical textual
Inversion for Molecular generation (HI-Mol). Specifically, we derive a molecule-specialized textual
inversion scheme and corresponding molecule sampling procedure using a recent large-scale molecu-
lar language model. Extensive experiments show the effectiveness of our framework across various
datasets, especially in achieving data-efficiency and having the capability to generate molecules with
our desired distribution. We hope our work initiates under-explored but crucial research direction of
exploiting large molecular models toward the data-efficient generation of molecules.

Future work and limitation. In this work, we apply our novel textual inversion scheme to the
molecular language model [21], where developing such a model is a very recently considered research
direction. An important future work would be improving the large-scale molecular language models
themselves, e.g., the breakthroughs in the image domain [8], which will allow more intriguing
applications of HI-Mol, such as composition (see Appendix F).

4This score is calculated by the improvement of the ROC-AUC score when the generated molecules are
additionally added to the training data; higher is better.
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Appendix: Data-Efficient Molecular Generation
with Hierarchical Textual Inversion

A Method details

We utilize a recently introduced text-to-molecule model, Molt5-Large-Caption2Smiles [21] in our
HI-Mol framework.5 This model is constructed upon a text-to-text model, T5 [38], and molecular
information is injected by additional training with both unpaired SMILES [37] string and caption-
SMILES paired dataset. Our experiment is conducted for 1,000 epochs using a single NVIDIA
GeForce RTX 3090 GPU with a batch size of 4. We use AdamW optimizer with ϵ = 1.0 × 10−8

and let the learning rate 0.3 with linear scheduler. We clip gradients with maximum norm of 1.0.
We update the assigned cluster cn of each molecules for the first 5 epochs following Eq. (1). For
interpolation-based sampling, we choose a uniform distribution p(λ), (i.e., p(λ) := U(l, 1 − l)),
where λ controls relative contributions of interpolated token embeddings. We set l = 0.0 on the
datasets in MoleculeNet benchmark [23], and l = 0.3 on the QM9 dataset [12].

B Datasets

MoleculeNet dataset. We perform generation experiments on single-task datasets, HIV, BBBP, and
BACE, from MoleculeNet [23] benchmark. For each dataset, molecules are labeled with 0 or 1, based
on its activeness of the target property:

• HIV consists of molecules and its capability to prevent HIV replication.
• BBBP consists of molecules and whether each compound is permeable to the blood-brain barrier.
• BACE consists of molecules and its binding results for a set of inhibitors of β-secretase-1.

We collect active (e.g., label-1) molecules to train molecular generative models. We utilize a common
splitting scheme for MoleculeNet dataset, scaffold split with split ratio of train:valid:test = 80:10:10
[23]. We emphasize that such scaffold split is widely considered in molecular generation domain [6].
Additional statistics for datasets on MoleculeNet are provided in Table 7.

Table 7: MoleculeNet downstream classification dataset statistics

Dataset HIV BBBP BACE

Number of molecules 41,127 2,039 1,513
Number of active molecules 1,443 1,567 691
Avg. Node 25.51 24.06 34.08
Avg. Degree 54.93 51.90 73.71

QM9 dataset. We perform generation experiments on the QM9 dataset [12], which is a widely
adopted to benchmark molecular generation methods. This dataset consists of 133,885 small orginic
molecules. We follow the dataset splitting scheme of [6] and randomly subset the training split with
2%, 5%, 10%, and 20% ratio for training our HI-Mol.

5https://huggingface.co/laituan245/molt5-large-caption2smiles

14

https://huggingface.co/laituan245/molt5-large-caption2smiles


C Evaluation metrics

We mainly utilize 6 metrics to incorporate diverse aspects for evaluation of the generated molecules.
We adopt 5 metrics (FCD, NSPDK, Validity, Uniqueness, Novelty) used in [7]:

• Fréchet ChemNet Distance (FCD) [24] evaluates the distance between the generated molecules
and test molecules using the activations of the penultimate layer of the ChemNet, similar to
popular Fréchet inception distance (FI) used in image domain [58]:

FCD := ∥m−mg∥22 + Tr
(
C + Cg − 2(CCg)

1/2
)
, (3)

where m,C are the mean and covariance of the activations of the test molecules, and mg, Cg are
the mean and covariance of the activations of the generated molecules.

• Neighborhood Subgraph Pairwise Distance Kernel MMD (NSPDK) [25] calculates the
maximum mean discrepancy between the generated molecules and test molecules. We follow the
evaluation protocol in [7], to incorporate both atom and bond features.

• Validity (Valid.) is the ratio of the generated molecules that does not violate chemical validity,
e.g., molecules that obey the valency rule.

• Uniqueness (Unique.) is the ratio of different samples over total valid generated molecules.
• Novelty is the ratio of valid generated molecules that are not included in the training set.

We introduce an additional metric (Active ratio) to evaluate how the generated molecules are likely to
be active, e.g., label-1 on our target property:

• Active ratio (Active.) is the ratio of the valid generated molecules that are active.

We utilize pre-trained classifiers to measure the activeness of the generated molecules. To be specific,
we train a graph isomorphism network (GIN) [59] with the entire training split, e.g., contains both
active (label-1) and inactive (label-0) molecules, of each dataset in the MoleculeNet benchmark [23].
We train 5-layer GIN with a linear projection layer for 100 epochs with Adam optimizer, a batch
size of 256, a learning rate of 0.001, and a dropout ratio of 0.5. We select the classifier of the epoch
with the best validation accuracy. The accuracies of the pre-trained classifier on the validation split
are 98.2%, 86.3%, and 86.1%, respectively. We calculate Active ratio by the ratio of the generated
molecules that this classifier classifies as label-1.
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D Baselines

In this paper, we compare our method with an extensive list of baseline methods in the literature of
molecular generation. We provide detailed descriptions of the baselines we considered:

• GDSS [7] proposes a diffusion model for graph structure, jointly learning both node and adjacency
space by regarding each attributes as continuous values.

• DiGress [33] proposes a discrete diffusion process for graph structure to properly consider
categorical distributions of node and edge attributes.

• DEG [14] suggests to construct molecular grammars from automatically learned production
rules for data-efficient generation of molecules. Due to the high computational complexity of the
grammar construction, this method can only be applied to the structurally similar molecules, e.g.,
monomers or chain-extenders, with an extremely limited number of molecules (∼100 molecules
with high structural similarity). Nevertheless, we compare with this method in the extremely
limited data regime of Appendix F.

• JT-VAE [10] proposes a variational auto-encoder that represents molecules as junction trees,
regarding motifs of molecules as the nodes of junction trees.

• PS-VAE [34] utilizes a principal subgraph as a building block of molecules and generates
molecules via merge-and-update subgraph extraction.

• MiCaM [52] introduces a connection-aware motif mining method to model the target distribution
with the automatically discovered motifs.

• CRNN [3] builds generative models of SMILES strings with recurrent decoders.
• STGG [6] introduces a spanning tree-based molecule generation which learns the distribution of

intermediate molecular graph structure with tree-constructive grammar.
• GraphAF [27] proposes an auto-regressive flow-based model for graph generation.
• GraphDF [30] introduces an auto-regressive flow-based model with discrete latent variables.
• MoFlow [28] utilizes a flow-based model for one-shot molecular generation.
• EDP-GNN [29] proposes a one-shot score-based molecular generative model, utilizing a discrete-

step perturbation procedure of node and edge attributes.
• GraphEBM [31] introduces a one-shot energy-based model to generate molecules by minimizing

energies with Langevin dynamics.
• GSDM [32] is a follow-up work of GDSS [7], suggesting to consider the spectral values of

adjacency matrix instead of adjacency matrix itself.
• CG-VAE [36] proposes a recursive molecular generation framework that generates molecules

satisfying the valency rules by masking out the action space.

16



E Ablation study

Table 8: Ablation on the text prompts for interpolation-based sampling on the 2% subset of QM9.
Generation prompt FCD ↓ NSPDK ↓ Valid. ↑ Unique. ↑ Novelty ↑
The molecule is a [S∗][I∗cn ][D

∗
n] 0.210 0.001 92.2 61.4 47.5

The molecule is similar to [S∗][I∗cn ][D
∗
n] 0.234 0.001 91.1 63.4 50.6

A similar molecule of [S∗][I∗cn ][D
∗
n] 0.271 0.001 91.5 65.0 52.6

The chemical is similar to [S∗][I∗cn ][D
∗
n] 0.437 0.002 90.2 75.5 72.4

A similar chemical of [S∗][I∗cn ][D
∗
n] 0.434 0.001 90.7 75.8 73.5

Table 9: Ablation on the hierarchical tokens on the 2% subset of QM9.
Training prompt FCD ↓ NSPDK ↓ Valid. ↑ Unique. ↑ Novelty ↑
The molecule is a [S∗

1 ][S
∗
2 ][S

∗
3 ] 6.529 0.032 96.6 21.4 37.2

The molecule is a [S∗
1 ][S

∗
2 ][D

∗
n] 0.474 0.002 87.0 72.9 72.0

The molecule is a [S∗
1 ][I

∗
cn ][D

∗
n] 0.434 0.001 90.7 75.8 73.5

Table 10: Ablation on the number of clusters K in Eq. (1) on the 2% subset of QM9.
K FCD ↓ NSPDK ↓ Valid. ↑ Unique. ↑ Novelty ↑
0 0.210 0.001 92.2 61.4 47.5

1 0.486 0.002 93.8 70.8 72.3
3 0.474 0.002 87.0 72.9 72.0
5 0.455 0.002 88.9 76.5 71.1
10 0.443 0.001 90.7 75.8 73.5
20 0.430 0.001 87.9 77.3 73.8
30 0.436 0.001 88.9 77.2 73.9

Effect of prompt. In Table 8, we show the ablation results on the generation prompt for embedding
interpolation-based sampling. We observe that we obtain low FCD and NSPDK scores when we use
a prompt similar to the training prompt. However, such choices yield low Novelty score, generating
the many molecules contained in the training samples. The prompt we utilize generates more novel
molecules while preserving the state-of-the-art FCD and NSPDK scores.

Effect of hierarchical tokens. In Table 9, we additionally conduct an ablation study on the effect of
the hierarchical tokens. We compare our design with different choice of hierarchy: (1) utilization
of only shared tokens, and (2) utilization of shared and detail tokens (without intermediate tokens).
For (1), we use temperature sampling instead based on the categorical distribution from a molecular
language model with temperature τ = 2.0 since it is impossible to apply our interpolation-based
sampling. The results show that consideration of each shared, intermediate, and detail tokens is
indeed important for improving the quality measured with various metrics.

Effect of K. In Table 10, we report the quantitative results of the following three cases. First, we
consider our proposed design with varying K from 3 to 30. IN addition, we consider two other
designs that do not contain intermediate tokens to verify the effect of them: (a) [S∗

1 ][D
∗
n] that the

intermediate tokens are removed, i.e., K=0 and (b) [S∗
1 ][S

∗
2 ][Dn∗] that the intermediate tokens are

replaced with a shared token [S∗
2 ], i.e., K=1. The results exhibit that the intermediate tokens are

indeed crucial for the performance, given that the performance 3 ≤ K ≤ 30 is much better than (a)
and (b). We also remark that we did not put much effort on tuning K, e.g., K=20 improves FCD as
0.434 → 0.430 from K=10.
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F Additional experiments

Table 11: Generated molecules from HI-Mol with compositional prompt. We invert 4 aromatic
molecules (top row) with the prompt “The molecule is a [S∗][D∗

i ]”. With learned embeddings of
[S∗] and [D∗

i ], we generate molecules (bottom row) with “The molecule is a boron compound of
[S∗][D̄∗]”. We circle the substructures which indicate that the generated molecules indeed satisfy the
condition of the given language prompt.

Input molecules for inversion

The molecule is a [S∗][D∗
i ]

Generated molecules

The molecule is a boron compound of [S∗][D̄∗]

Table 12: Results on (1) learning several concepts (the first row) and (2) learning an underlying
concept among diverse molecules (the second row).

MiCaM STGG GSDM HI-Mol (Ours)

Success ratio (%) 18.2 33.2 0.0 52.0
Average QED 0.555 0.558 0.090 0.581

Compositionality. In Table 11, we explore the compositionality of the learned token embeddings
from HI-Mol. We learn the common features of 4 aromatic molecules6, e.g., naphthalene, pyrrole,
benzene, and pyridine, via textual inversion. Then, we generate molecules with an additional condition
via language prompt. We observe that the generated molecules both satisfy (1) the learned common
concept of aromatic molecules and (2) the additional conditions from the language prompt.

Learning complex molecular concepts. In this section, we explore the ability of HI-Mol to learn
more complex molecular concepts. We conduct two kinds of experiments. Firstly, we impose several
target concepts for molecular generation. We collect 300 molecules from GuacaMol [60] which
satisfy QED>0.5, SA>2.5, and GSK3B>0.3.7 With these molecules, we check whether the generative
models can learn to model several molecular concepts. We report the ratio of the generated molecules
that satisfy the aforementioned condition, e.g., QED>0.5, SA>2.5, and GSK3B>0.3, as the Success
ratio in Table 12. Our HI-Mol shows superior results on learning several concepts, e.g., 33.2 → 52.0,
compared to the most competitive baseline, STGG [6]. Secondly, we explore whether HI-Mol can
learn the “underlying” molecular property, e.g., QED, among structurally diverse molecules. We
curate 329 molecules in the QM9 dataset [12] where (a) each molecule in this subset has a Tanimoto
similarity of no higher than 0.4 with any other molecule in the subset and (b) all the molecules
in this subset have a high QED ratio greater than 0.6. The average QED in Table 12 shows that
HI-Mol generates molecules with high QED even when the training molecules are structurally largely
different, i.e., HI-Mol indeed learns the underlying molecular concept.

6These molecules share several chemical properties such as resonance and planar structure.
7QED, SA, and GSK3B measure the drug-likeness, synthesizability, activity to GSK3B, respectively.
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Table 13: Quantitative results of the few-shot generation experiments on subsets of the HIV dataset
[23]. We generate the same number of molecules as the number of the training samples. Due to the
large training cost, we report the score of DEG [14] only for 30 samples.

# Samples Method Class Grammar Active. ↑ FCD ↓ NSPDK ↓ Valid. ↑ Unique. ↑ Novelty ↑

30

DEG [14] Graph ✓ 3.3 39.2 0.105 100 100 100
STGG [6] SMILES ✓ 0.0 41.5 0.110 100 67 100
CRNN [3] SMILES ✗ 0.0 40.0 0.121 80 71 100

HI-Mol (Ours) SMILES ✗ 8.3 34.8 0.103 80 75 100

150
STGG [6] SMILES ✓ 1.3 28.2 0.054 100 90 100
CRNN [3] SMILES ✗ 1.3 30.1 0.063 50 84 100

HI-Mol (Ours) SMILES ✗ 8.3 22.1 0.038 64 91 100

500
STGG [6] SMILES ✓ 1.3 22.8 0.041 100 74 100
CRNN [3] SMILES ✗ 2.7 30.0 0.064 51 100 100

HI-Mol (Ours) SMILES ✗ 10.3 20.8 0.020 63 91 100

Table 14: Comparison with pre-trained model of STGG [6] on the HIV dataset.
Method Active. ↑ FCD ↓ NSPDK ↓ Valid. ↑ Unique. ↑ Novelty ↑
STGG (from scratch) 1.6 20.2 0.033 100 95.8 100
STGG (fine-tuned) 3.6 20.0 0.030 100 87.1 100

HI-Mol (Ours) 11.4 16.6 0.019 100 95.6 100

Extremely limited data regime. Since our model exploits the power of large molecular language
models by designing a molecule-specialized textual inversion scheme, one can expect our model to be
beneficial in extremely limited data regimes compared with prior methods. To verify this, we conduct
an experiment using only a subset of the HIV dataset and report its quantitative result in Table 13.
Even with this situation, HI-Mol still outperforms prior state-of-the-art molecular generation methods,
e.g., our method improves FCD as 39.2 → 34.8 when trained with 30 samples.

Comparison with pre-trained model. In Table 14, we report the performance of the baseline method
by fine-tuning the pre-trained baseline model. Specifically, we fine-tune the model of STGG [6]
pre-trained with the ZINC250k dataset [26] on the HIV dataset [23]. We observe that HI-Mol still
achieves significantly better performance in overall metrics, e.g., 20.0 → 16.6 and 0.030 → 0.019 in
FCD and NSPDK, respectively.
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G Details on QM9 experiments

Table 15: Qualitative results for molecular generation varying the data ratio on QM9.
Ratio (%) Grammar FCD ↓ NSPDK ↓ Valid. ↑ Unique. ↑ Novelty ↑

2 ✗ 0.434 0.001 90.7 75.8 73.5
✓ 0.430 0.001 100 76.1 75.6

5 ✗ 0.412 0.001 89.4 85.8 70.4
✓ 0.410 0.001 100 86.4 72.4

10 ✗ 0.400 0.002 87.6 87.6 71.2
✓ 0.398 0.001 100 88.3 73.2

20 ✗ 0.384 0.001 86.7 87.8 70.0
✓ 0.383 0.001 100 88.7 71.8

Table 16: Comparison with the baseline with high Novelty via resampling strategy on QM9.
Method Resampling ratio FCD ↓ NSPDK ↓ Valid. ↑ Unique. ↑ Novelty ↑
GDSS [7] 1.0 2.900 0.003 95.7 98.5 86.3

HI-Mol (Ours; 2%) 1.9 0.601 0.002 100 100 100

In Table 15, we report additional experimental results varying the data ratio from 2% (2,113 molecules)
to 20% (21,126 molecules). In particular, when we use 20% of the training data the performance
improves further by 0.430 → 0.383 (compared to using 2% of training data), i.e., our HI-Mol better
learns molecule distribution when more molecules are available for training.

We note that there is a fundamental trade-off between FCD and Novelty. If the generated molecules
have many overlaps with training molecules, i.e., low Novelty, the FCD score improves, i.e., decreases,
since the generated molecules are more likely to follow the target distribution. Therefore, it is crucial
to compare FCD under a similar Novelty score. Therefore, in Table 16, we report the generation
results with the resampling strategy, i.e., we sample molecules until we have 10,000 molecules with
Validity, Uniqueness, and Novelty scores as 100 and we reject samples that violate these scores. We
denote the relative ratio of the total sampling trial (including the rejected ones) as Resampling ratio.
Here, we remark that such resampling process does not incur much computational cost, e.g., only 1.8
sec for a sample (see Appendix J for analysis on time complexity). The result shows that HI-Mol
generates high-quality novel molecules from our desired target distribution.

H Modification algorithm

Algorithm 1: Modification algorithm for an invalid SMILES string
Input: An invalid SMILES string
Output: A modified SMILES string

1 while exist a branch closing token token prior to a branch opening token do
2 Remove the corresponding branch closing token. // “CC)CCC” to “CCCCC”

3 while exist an unclosed branch opening token do
4 Add the the branch closing token at the end of the string. // “CC(CCC” to “CC(CCC)”

5 while exist an unclosed ring opening token do
6 Remove the ring opening token. // “CC1CCC” to “CCCCC”

7 while exist an atom that exceeds the valency do
8 Randomly drop a branch to satisfy the valency. // “C#C(=CC)C to “C#CC”

9 while exist a ring with less than 3 atoms do
10 Remove the ring opening/closing token. // “CC1C1 to “CCC”
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I Analysis on interpolation-based sampling

Table 17: Generated molecules from HI-Mol with varying λ in Eq. (2). Samples are generated with
the prompt “A similar chemical of [S∗][Ī∗][D̄∗]”. The columns [D∗

i ] and [D∗
j ] denote molecules in

the HIV dataset [23] whose token embeddings are interpolated for each row.
[D∗

i ] A similar chemical of [S∗][Ī∗][D̄∗] [D∗
j ]

λ = 0.0 λ = 0.3 λ = 0.5 λ = 0.7 λ = 1.0

λ = 0.0 λ = 0.3 λ = 0.5 λ = 0.7 λ = 1.0

Table 18: Generated molecules from HI-Mol with varying λ in Eq. (2). We interpolate a single-level
token, e.g., “A similar chemical of [S∗][Ī∗][D∗]” and “A similar chemical of [S∗][I∗][D̄∗]”.

A similar chemical of [S∗][Ī∗][D∗]

A similar chemical of [S∗][I∗][D̄∗]

Note that our sampling is based on the interpolation of two different token embeddings with different
values of λ ∼ p(λ). In Table 17, we provide how the generated molecules are changed with different
values of λ. With varying λ, one can observe that the generated molecules (1) maintain some original
important low-level semantics and (2) introduce some novel aspects distinct from both original
semantics. For example, λ = 0.7 in the first row of Table 17 introduces a new 4-membered ring
system while preserving the phosphorous-sulfur double bond structure of the original features in
[D∗

j ]. This observation exhibits that our embedding space models the manifold of underlying target
distribution effectively, enabling data-efficient sampling from the target distribution. We also provide
the generated samples from different hierarchies. Interpolating intermediate tokens (see the first
row of Table 18 change the low-level semantics, i.e., size of molecules, of the generated molecules
and interpolating detail (see the second row of Table 18) tokens change the high-level features, i.e.,
insertion of a single atom, of the generated molecules.

J Complexity

Table 19: Time and space complexity of each molecular generative method.
JT-VAE PS-VAE MiCaM STGG CRNN GDSS GSDM DiGress HI-Mol (Ours)

Time complexity (s) 4.8 0.1 0.9 0.7 0.5 71.2 2.0 9.1 1.8
Space complexity (GB) 0.4 1.2 1.6 2.1 0.4 1.2 1.1 1.5 4.8

In Table 19, we provide the time and space complexity to generate a molecule via various molecular
generative models. For time complexity, measured with a single RTX 3090 GPU, HI-Mol takes about
1.8 seconds to sample a single molecule, while other methods, e.g., GDSS and DiGress, require more
time due to denoising diffusion steps. For memory complexity, HI-Mol requires 4.8GB of GPU
VRAM space due to the usage of large model. We believe that reducing this space for large language
models, e.g., through [61] will be an interesting future direction.
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Table 20: Results on low-shot classification on the MoleculeNet benchmark. We report the average
and 95% confidence interval of the test ROC-AUC scores within 20 random seeds.

Dataset Method 16-shot 32-shot

HIV

DiGress [33] -2.30±3.50 -2.67±3.15
MiCaM [52] 1.02±3.29 0.69±2.09
STGG [6] 0.53±2.79 -0.47±2.36

HI-Mol (Ours) 2.35±2.71 2.16±1.64

BBBP

DiGress [33] 1.73±1.53 0.97±1.99
MiCaM [52] 1.91±2.13 1.78±1.98
STGG [6] 1.85±1.83 1.76±1.72

HI-Mol (Ours) 2.73±2.01 2.64±1.75

BACE

DiGress [33] -0.60±2.88 -0.91±1.82
MiCaM [52] -0.65±3.17 -1.11±2.95
STGG [6] 2.34±2.15 2.01±1.45

HI-Mol (Ours) 3.53±1.57 3.39±1.80

K Discussion on molecular optimization

1st,	PlogP=24.67 2nd,	PlogP=21.72

Figure 4: Visualizations of the gen-
erated molecules with γ = 50. The
maximum PLogP among the train-
ing molecules is 4.52.

In Table 4, we have shown the usefulness of our HI-Mol to max-
imize the PLogP value of the generated molecules. While this
evaluation setup for molecular optimization is a common and
popular choice in molecular domain [6, 10, 27, 30], some prior
works have noted that solely maximizing the PLogP value may
yield unstable or hard-to-synthesize molecules [6, 62, 63]. In
Figure 4, we show the visualizations of the optimized molecules
with the highest PLogP values. Similar to the most competitive
baseline, STGG [6], our optimized molecules contain a large
number of atoms, and thus relatively hard to synthesize. Al-
though these results show that our HI-Mol effectively learns to
incorporate the condition PLogP in a data-efficient manner, it
would be an important research direction to develop an evalua-
tion framework for molecular optimization that takes into account the “realistic-ness”, e.g., stability
and synthesizability, of the molecules.

L Details of low-shot molecular property prediction

In Table 20, we report the full results of low-shot molecular property prediction experiments with
averages and 95% confidence intervals. With randomly sampled low-shot molecules from the train
split (used in our main experiments of Table 1), we generate ×3 number of valid molecules via
generative models, e.g., we generate 96 molecules for 32-shot experiments. For the classifier, we
utilize the 5-layer GIN [59] from [64], which is pre-trained with unlabeled molecules via self-
supervised contrastive learning. We fine-tune this model for 100 epochs by introducing a linear
projection head for each dataset. We use Adam optimizer with a learning rate of 0.0001 and no
weight decay. The results are calculated based on the test ROC-AUC score of the epoch with the best
validation ROC-AUC score. Specifically, we consider two scenarios: (1) training the classifier with
only the low-shot molecules and (2) training the classifier with both the original low-shot molecules
and the generated molecules via the molecular generative model. We report ∆ROC-AUC score,
calculated by the subtraction of the ROC-AUC score of (1) from (2).
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M Broader impact

This work will facilitate research in molecular generation, which can speed up the development of
many important generation tasks such as finding drugs for a specific organ and disease when the hit
molecules are rarely known. However, malicious use of well-learned molecular generative model
poses a potential threat of creating hazardous molecules, such as toxic chemical substances. On the
other hand, molecular generation is also essential for generating molecules to defend against harmful
substances, so the careful use of our work, HI-Mol, can lead to more positive effects.
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