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Abstract

Drug synergy, characterized by the amplified combined effect of multiple drugs,1

is critically important for optimizing therapeutic outcomes. Limited data on drug2

synergy, arising from the vast number of possible drug combinations and testing3

costs, motivate the need for predictive methods. In this work, we introduce Con-4

gFu, a novel Conditional Graph Fusion Layer, designed to predict drug synergy.5

CongFu employs an attention mechanism and a bottleneck to extract local graph6

contexts and conditionally fuse graph data within a global context. Its modular7

architecture enables flexible replacement of layer modules, including readouts8

and graph encoders, facilitating customization for diverse applications. To evalu-9

ate the performance of CongFu, we conduct comprehensive experiments on four10

datasets, encompassing three distinct setups for drug synergy prediction. CongFu11

achieves state-of-the-art results on 11 out of 12 benchmark datasets, demonstrating12

its ability to capture intricate patterns of drug synergy. Through ablation studies,13

we validate the significance of individual layer components, affirming their contri-14

butions to overall predictive performance. Finally, we propose an explainability15

strategy for elucidating the effect of drugs on genes. By addressing the challenge of16

predicting drug synergy in untested drug pairs and utilizing our proposed explain-17

ability approach, CongFu opens new avenues for optimizing drug combinations18

and advancing personalized medicine.19

1 Introduction20

Drug combination therapy is a widely adopted approach due to its numerous advantages. Unlike21

monotherapy, the effect of the treatment can be significantly amplified by using a combination of22

drugs [1]. Furthermore, drug combinations have the potential to reduce adverse effects [2], decrease23

toxicity [3], and overcome drug resistance [4]. Multi-drug therapy can address complex diseases such24

as cancer [5, 6] or human immunodeficiency virus [7]. However, certain drug combinations may lead25

to unfavorable or harmful outcomes [8, 9], making it crucial to accurately predict synergistic drug26

pairs and potential side effects resulting from different drug interactions.27

Historically, the discovery of drug combinations has relied on clinical trials and trial-and-error28

methods. These approaches are not only costly and time-consuming but can also pose risks to29

patients [10, 11]. Moreover, the scalability limitations of wet-lab tests restrict the screening of drug30

combinations [12]. However, advancements in experimental techniques have led to the development of31

high-throughput drug screening (HTS) [13, 14, 15], a fast and precise method that allows researchers32

to explore large drug combination spaces. This has resulted in a rapid increase in drug combination33

synergy data. Public databases like ASDCD [16] provide drug combination data and large HTS34

synergy studies covering numerous drugs and cancer cell lines [3]. These databases provide high-35

quality training data for the development of computational approaches and aid in evaluating these36
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methods for predicting novel drug combinations. However, the discrepancy between in vivo and in37

vitro experiments limits the effectiveness of HTS.38

In recent years, the availability of large HTS datasets [17] has spurred the development of machine39

learning models for drug synergy predictions [18]. Early deep learning methods, such as DeepSynergy40

[19] and MatchMaker [20], utilize fully connected networks based on cell lines and drug features41

derived from Morgan fingerprints [21]. Subsequent models like AuDNNsynergy [22] incorporate42

autoencoders that leverage "copy number variation" data, gene expressions, and mutations. Other43

models like TranSynergy [23] adopt a transformer architecture to process a cell line and two drug44

feature vectors as input. DTF [24] integrates a tensor factorization and a deep neural network for drug45

synergy prediction. Models like DeepDDS [25] and DDoS [26] utilize graph neural networks over46

the molecular graph to enrich drug encoding. Further, Jiang’s [27] and Hu’s methods [28] expand47

the range of modalities employed for drug synergy predictions, including drug-drug and drug-target48

interactions. SDCNet [29] introduces the concept of cell line-specific graph representations for drug49

synergy data and trains a relational graph convolutional network over it.50

Considering that drugs interact in the context of cell line treatment, we formulate the problem as a51

conditional variation of drug pair scoring framework [30] and call the cell line as a context of drug52

interaction. Further, we refer to it as "context" for simplification.53

While existing approaches have demonstrated that sharing information between multiple modalities54

(fusion) leads to a performance gain [31], the fusion strategy in drug synergy is mostly a simple55

concatenation of latent representations, failing to capture the intrinsic dynamic synergies between56

drug pairs and cell lines.57

Therefore, inspired by the concept of information fusion and the incorporation of a larger amount58

of contextual information in graph encoding, we introduce CongFu (Conditional Graph Fusion) for59

conditional drug pair scoring with a specific application of drug synergy prediction. The proposed60

layer includes context propagation and bottleneck, which work together to efficiently fuse two61

molecular graphs and a cell line. We present a technique for utilizing the proposed layer and62

evaluate the framework’s performance on 12 benchmarks. The results indicate that our architecture63

outperforms existing approaches, and the inclusion of the CongFu layer tends to benefit other graph-64

based architectures. Additionally, we conduct ablation studies to emphasize the importance of every65

component in the proposed layer. Our explainability framework helps interpret model predictions,66

revealing the impact of drugs on specific genes.67

To sum up, our contribution can be stated as follows: 1) We propose a novel CongFu layer for68

conditional graph pair scoring and apply it to drug synergy predictions 2) We conduct an ablation69

study to highlight the importance of fusion between graphs and to explore an appropriate place for70

initiating information sharing 3) We set the new state-of-the-art for 11 benchmarks derived from the71

DrugComb database in inductive and transductive setups 4) We provide the interpretability of our72

model to gain biological insights on gene-drug interactions.73

2 Related Work74

The related works can be categorized as follows:75

Linear Models. Models such as Deep Synergy [19], MatchMaker [20], and AuDNNsynergy [22] uti-76

lize fully connected networks to process cell lines and drug features encoded via Morgan fingerprints.77

Deep Synergy applies a single MLP over the concatenated input triplet, while MatchMaker uses one78

MLP with shared weights to encode each drug conditionally based on the cell line. The hidden repre-79

sentations of the drug pairs are then passed to the MLP. AuDNNsynergy has a similar architecture80

to Deep Synergy but additionally processes "copy number variation" data, gene expressions, and81

mutations via autoencoders.82

Graph-based methods. Models like DeepDDS [25] and DDoS [26] employ Message Passing83

Neural Networks (MPNNs) to encode each graph separately and an MLP to encode the cell line.84

All processed modalities are then concatenated and passed to the MLP. In models like SDCNet85

[29] and Jiang’s method [27], the problem of drug synergy is formulated as link prediction. Both86

methods create cell line-specific heterogeneous networks of drugs and utilize an encoder-decoder87

architecture. Additionally, Jiang’s method incorporates proteins into the drug-drug network, while Hu88

et al. [28] construct a single heterogeneous network of cell lines, drugs, diseases, and proteins. They89
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Figure 1: CongFu layer architecture. The layer takes in two graphs and a context vector as its input
and produces an updated triplet as the output. This layer consists of three separate modules: Context
Propagation, which facilitates the transfer of information from the initial context to the nodes of
the graphs; Graph Update, which propagates the injected information throughout the graphs; and a
Bottleneck that merges the local contexts related to each graph into a global context. The resulting
output comprises updated representations of the two graphs and the context.

use the RotatE model [32] to encode diseases and pre-trained models [33, 34] for other modalities of90

encoding. After propagation in the heterogeneous graph, drug and cell line embeddings are passed to91

the MLP for the final prediction.92

Our method: CongFu. Our proposed method, CongFu, is a significant advancement in the graph-93

based category. We introduce a novel layer, CongFu, which formulates the heterogeneous graphs94

between multiple drugs. This layer models dynamic interactions in a nonlinear manner, representing95

a substantial improvement over existing methods. Additionally, we investigate a variety of strategies96

to optimally integrate the CongFu layer, with the aim of maximizing predictive performance.97

3 Methods98

This section formalizes the CongFu layer and its components (Fig. 1). We start with the problem99

formulation including notations and task descriptions. We then break down the architecture of the100

CongFu layer into corresponding equations. Finally, we discuss its modularity characteristic, explore101

potential use cases, and consider possible adaptation of the algorithm to support problems with102

multiple (exceeding 2) graphs.103

3.1 Problem Formulation104

Notations. Let G = (V, E) denote a graph with N nodes and E edges. Graph G is associated with105

an adjacency matrix A ∈ RN×N , where Aij = 0 if there is no edge between nodes i and j; node106

feature set is denoted as X ∈ RN×Dnode , while edge feature set is denoted as E ∈ RE×Dedge107

Task: Conditional drug pair scoring. Given a set of graph pairs D = {(G1A,G1B), ..., (GnA,GnB)}108

and associated context features for each graph pair C = {C1, . . . ,Cn} as input, where Ci ∈ RDcont ,109

the objective of the task is to predict the corresponding target values Y = {Y1, . . . ,Yn}, where Yi110

is a scalar value.111
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3.2 CongFu Layer Architecture112

The CongFu layer receives as input two molecular graphs and a context vector (representing a cell113

line) and outputs an updated triplet. This layer consists of three distinct modules:114

1. Context Propagation: allows the flow of information from the initial context to the nodes of115

the graphs116

2. Graph Update: propagates the injected information along the graph117

3. Bottleneck: combines the local contexts associated with each graph to form a global context118

As a result, the layer outputs updated representations of both graphs and the context.119

The context features C ∈ R1×Dcont are required to have the same dimension (Dcont) as node120

features XA ∈ RNA×Dnode ,XB ∈ RNA×Dnode (Dnode). To achieve this, the context features are121

linearly transformed as illustrated in (1), where W ∈ RDcont×Dnode . If context and node feature122

dimensions are equal (Dcont = Dnode), no transformation is required. Further, node and context123

feature dimensions are denoted as D.124

C = CW (1)

The modular structure of the CongFu layer allows for the free choice of an aggregation strategy of125

initial and updated feature sets in (2), an MPNN for the Graph Update module (3), and a replacement126

of readout in the Bottleneck module (6).127

3.2.1 Context propagation128

This module updates node feature representations XA and XB based on the context C using a129

conditional approach. The updated node representations X̂A, X̂B are then added to the initial node130

representations XA,XB (2). Specifically, we can express this process as follows:131

X̂j = Xj +W1Xj +W2ReLU(CW3) (2)

Here, j ∈ {A,B}, {XA,XB , X̂A, X̂B} ∈ RN×D, while {W1,W2,W3} ∈ RD×D.132

3.2.2 Graph update133

After injecting the context into the node features, information is propagated along the graph. Due to134

the module’s modularity property, any MPNN (e.g., GIN [35], GraphSAGE [36], GPS [37]) can be135

used for graph updates (3). The edge features E are optional and can be passed if available, and the136

MPNN supports them. Then, Batch Normalization [38] and ReLU [39] are applied over X̂j , where137

j ∈ A,B.138

X̂j = MPNN(X̂j ,Ej ,Aj) (3)

X̂j = BatchNorm(X̂j) (4)

X̂j = ReLU(X̂j) (5)

3.2.3 Bottleneck139

In this step, the attention-based readout function F is used to aggregate node-level features X̂A, X̂B140

conditioned on the context C (6). The resulting output, CA,CB , represents the local context of each141

graph.142

F(X̂j ;C)→ Cj (6)
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The equation of the readout function F , inspired by the Graph Attention Networks (GAT) [40] layer143

update rule, is illustrated in (7), where j ∈ A,B, W ∈ RD×D, d, b ∈ mathbbRD are trainable144

matrix and biases respectively. The attention coefficient ai is computed in (8) to account for the145

importance of context and node features.146

Cj =

Nj∑
i

1

Nj + 1
αiWXi

j + b (7)

αi = softmax(dT [WC||WXi
j ]) (8)

Finally, we update the global context Ĉ as a sum of local contexts CA and CB (9).147

Ĉ = CA +CB (9)

3.2.4 Extending to multiple graphs148

While our algorithm is designed to operate over two graphs, it can be easily extended for multiple149

(more than 2) graphs. The Context Propagation and Graph Update modules are invariant to the150

number of graphs as each receives a single graph as input. The fusion process remains consistent151

within the Bottleneck. Consequently, the sum over two graphs in (9) is replaced by the sum over k152

graphs’ contexts.153

Ĉ =

k∑
j

Cj (10)

4 Experiments154

4.1 Datasets155

We perform an extensive evaluation of the proposed algorithm for predicting drug synergy effects156

using four datasets tested in three different setups, resulting in a total of 12 benchmarks. These157

datasets are sourced from DrugComb [41], the most comprehensive and current database of drug158

combinations. The goal is to predict the synergistic effect of drugs for a specific cell line (referred159

to as the context in our notation), with the drugs represented as SMILES [42]. More details on the160

dataset can be found in Appendix A.161

4.2 Experimental Setup162

We assess the model using three distinct setups for each dataset, adhering to the methodology proposed163

by DeepDDS [25]. Specifically, we employ a transductive setup with a 5-fold cross-validation, where164

the training set is further divided into training and validation subsets using a 90/10 ratio. In the165

leave-drug-out setup, we partition the set of drugs into five equally sized groups, with the training set166

excluding all drugs from the test set. We then conduct cross-validation stratified by drug groups. For167

the leave-combination-out setup, the drug pairs from the test set are removed from the training set,168

although individual drugs may still appear in both the training and test sets. The performance of the169

model is evaluated using AUROC and AUPRC metrics to deal with imbalance.170

4.3 Implementation details171

The atom representation is computed as the embedded atomic number, while the edge representation172

corresponds to the embedded bond type. The cell line is compressed into the latent space via a 2-layer173

MLP. Each graph is individually encoded using a 3-layer Graph Isomorphism Network (GINE) [43]174

with Batch Normalization [38] and ReLU activation. Two CongFu layers with the same embedding175

dimension are applied to integrate information from the graphs and the cell line, utilizing GINE as176

an MPNN. A prediction head consisting of a 2-layer MLP operates over the concatenation of the177
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Table 1: Comparison to SOTA on DrugComb - HSA Synergy Score

Method Transductive Leave-comb-out Leave-drug-out

AUROC AUPRC AUROC AUPRC AUROC AUPRC

CongFu (ours) 0.976± 0.001 0.949± 0.002 0.968± 0.003 0.931± 0.007 0.832± 0.02 0.67± 0.03
DeepDDS 0.956± 0.02 0.913± 0.005 0.937± 0.008 0.87± 0.018 0.798± 0.03 0.625± 0.04
DSN - DDI 0.931± 0.01 0.861± 0.02 0.948± 0.004 0.894± 0.006 0.8± 0.013 0.645± 0.031
XGBoost 0.73± 0.005 0.565± 0.008 0.729± 0.005 0.556± 0.003 0.684± 0.022 0.48± 0.045
LogReg 0.723± 0.005 0.536± 0.007 0.718± 0.006 0.528± 0.013 0.67± 0.018 0.435± 0.043

Table 2: Ablation study on a conditional fusion on DrugComb - HSA Synergy Score

Method Transductive Leave-comb-out Leave-drug-out

AUROC AUPRC AUROC AUPRC AUROC AUPRC

CongFu (ours) 0.976± 0.001 0.949± 0.002 0.968± 0.003 0.931± 0.007 0.832± 0.02 0.67± 0.03
w/o conditioning 0.966± 0.001 0.928± 0.003 0.949± 0.002 0.892± 0.007 0.812± 0.018 0.633± 0.04
w/o fusion 0.97± 0.017 0.939± 0.03 0.955± 0.002 0.906± 0.006 0.81± 0.02 0.607± 0.04

cell line and drug representations. ReLU is used as an activation function between hidden layers178

in all MLPs. The training was conducted on a single NVIDIA RTX 6000 taking approximately 2179

minutes per epoch. We utilized the Adam [44] optimizer and binary cross-entropy loss during training.180

The training setup and hyperparameters remained consistent across all benchmarks, as illustrated in181

Appendix D. The overall architecture is depicted in Appendix F.182

4.4 Results183

Our model, based on the CongFu layer, demonstrates superior performance compared to the other184

methods in 11 out of the 12 benchmarks, according to the AUPRC score. The only exception is185

observed in the Loewe leave-combination-out setup, where DeepDDS [25] marginally surpasses our186

model by 0.003 in terms of AUROC. However, it’s worth noting that our model still outperforms187

DeepDDS by 0.02 in AUPRC for the same setup. The most significant performance gap in favor188

of our model is observed in the benchmarks using the HSA score (Table 1), with an improvement189

ranging from 0.036 to 0.061 in AUPRC. Due to the large input vector of size 1508, XGBoost and190

Logistic Regression struggle to capture all dependencies and show poor performance compared to191

the state-of-the-art models. Tables 1, and other quantitative results in Appendix E, summarize our192

results and compare CongFu-based architecture to other models mentioned in the experimental setup193

section. Importantly, our model exhibits substantial improvement in inductive settings, underscoring194

its capacity to generalize effectively to unseen data.195

4.4.1 Ablation study196

In order to validate the significance of conditional fusion, we perform an ablation study, focusing197

on the transductive and leave-drug-out HSA benchmarks. The study is comprised of two main198

experiments:199

• Without conditioning: The aim of this experiment is to assess the impact of conditioning200

on the context in the fusion component. We substitute the Context Propagation module201

in CongFu with a cross-attention module. In this module, all nodes of GA and GB are202

interconnected through a bipartite graph, and information exchange is facilitated via a GAT203

as implemented in the intra-view of DSN-DDI. While this approach enables information204

sharing between the two graphs, it does not account for the context between them.205

• Without fusion: This experiment is designed to evaluate the importance of information206

sharing (fusion) between graphs. We replace all CongFu layers with MPNNs - specifically,207

GINE - to encode drugs independently. The results of this ablation study highlight the208

significance of information exchange between the two graphs.209

4.4.2 Determining the Optimal Point for Fusion210

We conduct a series of experiments using a 5-layer model composed of MPNNs and fusion layers211

(either CongFu or cross-attention layers). The fusion layers are applied after the MPNNs, which212
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initially encode each graph independently, without any information exchange. The idea behind213

the middle fusion is, firstly, to let the model learn representations of drugs separately, then learn214

the interaction of each drug with the cell line (as it was in MatchMaker), and finally combine215

representations of drugs and a cell line together. The aim of this study is to highlight the importance216

of conditional fusion (CongFu) between graphs and to identify the optimal point for initiating217

information sharing, referred to as ’fusion injection’.218

Figure 2: The impact of using the conditional fusion starting from different model layers on the
leave-drug-out HSA benchmark

On Figure 2, the x-axis (Fusion layer) represents the layer in the model where fusion begins, i.e.,219

the number of preceding MPNN layers. For instance, for Fl = 2, the model consists of 2 MPNN220

layers followed by 3 fusion layers. Overall, starting from Fl = 1, the models with CongFu layers221

consistently outperform those with cross-attention layers. The study reveals that in transductive and222

leave-drug-out setups, the optimal model configuration includes 3 MPNN layers and 2 CongFu layers.223

However, for the leave-comb setup, the model requires 4 MPNNs.224

4.4.3 Explainability225

In this chapter, we provide biological insights by elucidating the predictions of the model. Our aim is226

to answer the question: “What impact does each drug have on a specific gene?” To tackle this, we use227

the chain rule to estimate the gradient magnitude of the output passed through drug encoders w.r.t a228

specific gene.229

Firstly, we calculate gradients of pooled drug embeddings from the last CongFu layer w.r.t a gene.230

The gene is represented as g ∈ R, the cell line is denoted as C = [g1, g2...gn] ∈ RN , and drug231

embedding is denoted as h ∈ RD.232

R(gi, h) = [R(gi, h1),R(gi, h2), ...,R(gi, hd)] =

[
∂h1

∂gi
,
∂h2

∂gi
, ...,

∂hn

∂gi

]
(11)

Next, we compute gradients of the model output from the predictive head, denoted as y, w.r.t the drug233

embeddings obtained from the last CongFu layer.234

R(h, y) = [R(h1, y),R(h2, y), ...,R(hd, y)] =

[
∂y

∂h1
,
∂y

∂h2
, ...,

∂y

∂hd

]
(12)

Finally, we calculate the modulus of the dot product between these gradients multiplied by the input235

value (gene), which represents the magnitude of the gradient passed through the drug encoder.236

R(gi) = |giR(gi, h)R(h, y)| =

∣∣∣∣∣∣gi
∑
j

∂hj

∂gi

∂y

∂hj

∣∣∣∣∣∣ (13)

To assess the impact of each drug on a gene, we compute the proportion of the magnitudes of drug A237

and drug B.238

Prior research [45, 46, 47] has demonstrated that the combination of the epidermal growth factor239

receptor (EGFR) inhibitor Afatinib and the serine/threonine protein kinase B (AKT) inhibitor MK2206240

has a synergistic impact on the treatment of lung cancer and head and neck squamous cell carcinoma.241
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Figure 3: Impact of Afatinib and MK2206 top most important genes from BT-20 cell line

In DeepDDS [25], authors plot heat maps of the atom correlation matrix before and after training to242

observe the change in feature patterns.243

Figure 3 illustrates the impact of Afatinib and MK2206 on the top 10 most important genes from244

BT-20 (breast tumor) cell line, sorted in descending order according to the magnitude of gradients.245

Interestingly, these drugs have different impacts on each gene. For example, genes ADH5 and246

TSPAN3 primarily interact with Afatinib rather than MK-2206. Though both drugs have quite similar247

impacts on UBE2A and PEX11A genes. We believe the provided explainability framework will offer248

scientists interesting biological insights regarding model prediction and will expedite the discovery249

of new drugs.250

5 Conclusion251

In this work, we introduced a novel Conditional Graph Fusion Layer (CongFu) specifically designed252

for drug synergy predictions. The CongFu layer utilizes an attention readout mechanism and a253

bottleneck module to extract local graph contexts and conditionally fuse graph data within a global254

context. The modular design of CongFu allows for easy customization by replacing layer modules,255

such as readouts and graph encoders.256

We conducted extensive experiments on four distinct datasets across three different setups to evaluate257

CongFu’s performance in predicting drug synergy. CongFu outperformed state-of-the-art methods258

on 11 out of 12 benchmark datasets, demonstrating its ability to capture complex drug synergy259

patterns. Ablation studies further confirmed the importance of incorporating CongFu layers and their260

contribution to the overall predictive performance.261

By effectively predicting drug synergy in untested drug pairs, CongFu paves the way for optimizing262

drug combinations and advancing personalized medicine. However, our study is not without limita-263

tions. While we have developed a universal technique for solving the conditional graph pair scoring264

problem, it is currently only applicable in the domain of drug synergy prediction. As new problems265

that align with the task’s requirements emerge, our methodology can be applied and tested on them.266

Although it is theoretically possible to extend the approach to a broader range of input graphs, the267

lack of appropriate datasets prevents us from evaluating CongFu’s performance on these problems.268

To the best of our knowledge, language models (LMs) have not been applied yet for predicting drug269

synergy. We will consider combining LMs with the idea of fusion in future work.270
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A Dataset details418

Drugs represented as SMILES were converted using RDKit [48] into a PyG [49] graph, with atoms419

represented as nodes and bonds represented as edges. The features of the cell line are gathered from420

the Genomics of Drug Sensitivity in Cancer 1. This includes normalized basal expression profiles of421

approximately 1000 human cancer cell lines. From the normalized expression levels of 17737 genes,422

we select 908 landmark genes [50]. Therefore, the cell lines are represented by a feature vector of423

length 908.424

B Baselines425

CongFu is benchmarked against state-of-the-art methods for drug synergy predictions. Specifically,426

we utilize the official implementations of DeepDDS [25] and a modified version of DSN-DDI [51]. In427

the latter, the relation-type embedding is substituted with a cell feature matrix, enabling the prediction428

of drug synergy from drug-drug interactions. For the baseline models, we implement Logistic429

Regression [52] and XGBoost [53] over the concatenated representations of cell lines and drugs,430

encoded using a pre-trained Deep Graph Infomax model [43]. SDCNet [29] and Hu’s methods [28]431

are not included in the comparison due to the irreproducibility and absence of codebase, respectively.432

C Preprocessing description433

Each dataset is created by quantifying the target through four distinct types of synergy scores,434

specifically Loewe additivity (Loewe) [54], Bliss independence (Bliss) [55], zero interaction potency435

(ZIP) [56], and highest single agent (HSA) [57]. These targets describe the measurement of drug436

interaction, specifically the degree of additional drug responses observed compared to the expected437

response. In other words, drug synergy indicates the percentage of excess or reduced response in438

antagonistic settings.439

The preprocessing of the dataset follows the strategy of DDoS [26]. Initially, we exclude all triplets440

that do not have corresponding identifiers in the cell line feature table. Then, triplets with any missing441

data (cell line, drugs, targets) are filtered out. Finally, duplicated triplets are removed. Each of the442

four synergy scores is binarized based on thresholds [15]. Samples with a synergy score above 10 are443

considered positive (synergistic), and samples lower than -10 are considered negative (antagonistic).444

Consequently, we end up with four datasets (Loewe, Bliss, HSA, and ZIP) with names corresponding445

to their targets. The statistics of each dataset are described in Table 3.446

Table 3: Statistics of the datasets, where Loewe, Bliss, HSA, ZIP - datasets derived from DrugComb.
Statistics for DrugComb are calculated after the preprocessing stage. The percentage of the positive
labels is rounded to the first decimal point.

Dataset # Samples % Positive Labels # Drugs # Cell Lines

Loewe 163816 14.8 2147 164
Bliss 125548 49.5 1868 164
HSA 108559 29.5 1189 162
ZIP 89047 59.8 1810 162
DrugComb 647232 - 4268 288

1https://www.cancerrxgene.org/gdsc1000/GDSC1000_WebResources/Data/preprocessed/
/Cell_line_RMA_proc_basalExp.txt.zip
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D Model hyperparameters447

Table 4: Model hyperparameters

Hyperparameter Value Hyperparameter Value

Learning rate 1e− 4 Epochs 100
Node embedding size 300 Edge embedding size 300
# Graph encoders 3 Graph encoder GINE([300, 300, 300])
# Graph encoders (CongFu) 2 Graph encoder (CongFu) GINE([300, 300, 300])
Cell line encoder [908, 512, 300] Prediction Head [812, 256, 64]

E Additional experimental results448

Table 5: Comparison to SOTA on DrugComb - Bliss Synergy Score

Method Transductive Leave-comb-out Leave-drug-out

AUROC AUPRC AUROC AUPRC AUROC AUPRC

CongFu (ours) 0.982± 0.001 0.981± 0.001 0.975± 0.002 0.974± 0.003 0.79± 0.02 0.779± 0.02
DeepDDS 0.956± 0.004 0.955± 0.004 0.941± 0.009 0.938± 0.009 0.76± 0.03 0.75± 0.03
DSN - DDI 0.894± 0.04 0.886± 0.04 0.952± 0.003 0.946± 0.004 0.754± 0.005 0.742± 0.009
XGBoost 0.717± 0.003 0.652± 0.004 0.712± 0.005 0.647± 0.011 0.64± 0.009 0.584± 0.012
LogReg 0.664± 0.003 0.605± 0.003 0.661± 0.004 0.603± 0.01 0.595± 0.011 0.552± 0.012

Table 6: Comparison to SOTA on DrugComb - Loewe Synergy Score

Method Transductive Leave-comb-out Leave-drug-out

AUROC AUPRC AUROC AUPRC AUROC AUPRC

CongFu (ours) 0.939± 0.005 0.791± 0.01 0.772± 0.04 0.403± 0.07 0.774± 0.03 0.423± 0.07
DeepDDS 0.926± 0.004 0.746± 0.018 0.775± 0.03 0.409± 0.06 0.777± 0.027 0.403± 0.07
DSN - DDI 0.807± 0.02 0.437± 0.039 0.771± 0.028 0.358± 0.02 0.774± 0.019 0.361± 0.033
XGBoost 0.621± 0.002 0.303± 0.003 0.562± 0.013 0.215± 0.026 0.562± 0.013 0.215± 0.026
LogReg 0.61± 0.004 0.27± 0.005 0.58± 0.02 0.21± 0.028 0.58± 0.02 0.21± 0.028

Table 7: Comparison to SOTA on DrugComb - ZIP Synergy Score

Method Transductive Leave-comb-out Leave-drug-out

AUROC AUPRC AUROC AUPRC AUROC AUPRC

CongFu (ours) 0.986± 0.002 0.99± 0.001 0.983± 0.001 0.988± 0.001 0.829± 0.01 0.874± 0.01
DeepDDS 0.977± 0.003 0.983± 0.002 0.964± 0.005 0.974± 0.004 0.812± 0.008 0.86± 0.01
DSN - DDI 0.947± 0.01 0.96± 0.009 0.964± 0.002 0.974± 0.002 0.793± 0.024 0.844± 0.012
XGBoost 0.736± 0.002 0.742± 0.001 0.732± 0.002 0.739± 0.005 0.665± 0.015 0.689± 0.027
LogReg 0.692± 0.003 0.712± 0.002 0.691± 0.008 0.711± 0.007 0.619± 0.008 0.66± 0.025
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F CongFu schematics449

F.1 CongFu-based model architecture450

Figure 4: CongFu-based model architecture. The model takes in two drugs and a cell line as its
input. The pairs of drugs are represented as graphs, where node features for each are obtained via
atomic number embeddings, edge features are calculated as bond embeddings, and the cell line
is encoded using MLP. Then, MPNN(s) are used to encode each graph separately. Next, CongFu
layer(s) is utilized to fuse information from graphs and a cell line. Finally, an MLP is applied over
the concatenation of drugs and the cell lines.
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F.2 CongFu-based model algorithm451

Algorithm 1: Algorithm for L layer CongFu-based model.
Input: Pair of graphs GA, GB with NA, NB nodes, and EA, EB edges; Adjacency matrices

AA ∈ RNA×NA and AB ∈ RNB×NB ; Node features XA ∈ RNA×1, XB ∈ RNB×1, and
edge features EA ∈ REA×1, EB ∈ REB×1; Context C ∈ R1×Dcont ; Layer
l ∈ [0, L− 1]; Fusion layer Fl.

Output: Node features XA ∈ RNA×D, XB ∈ RNB×D; Context C ∈ R1×D;

C← MLP(C) ∈ R1×D

for j ∈ [A,B] do
Xj ← NodeEncoder(Xj) ∈ RNj×D

for l = 0, 1, ..., Fl − 1 do
Ej ← EdgeEncoder(Ej) ∈ REj×D

Xj ← MPNNl(Xj ,Ej ,Aj)

Xj = BatchNorm(Xj)

Xj = ReLU(Xj)

for l = Fl, Fl + 1, ..., L− 1 do
for j ∈ [A,B] do

Xj ← Xj +Wl
1Xj +Wl

2ReLU(W
l
3C)

Xj ← MPNNl(Xj ,Ej ,Aj)
Xj ← BatchNorm(Xj)
Xj ← ReLU(Xj)
for i = 0, 1, ..., Nj do

αi ← softmax(dT
l [W

l
4C||Wl

4X
i
j ])

Cj ←
∑Nj

i
1

Nj+1αiW
l
4X

i
j + bl

C← CA +CB

return MLP([XA

∥∥XB

∥∥C]) ∈ R
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