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Abstract

When a small molecule binds to a protein, the 3D structure of the protein and1

its function change. Understanding this process, called molecular docking, can2

be crucial in areas such as drug design. Recent learning-based attempts have3

shown promising results at this task, yet lack features that traditional approaches4

support. In this work, we close this gap by proposing DIFFDOCK-POCKET, a5

diffusion-based docking algorithm that is conditioned on a binding target to predict6

ligand poses only in a specific binding pocket. On top of this, our model supports7

receptor flexibility and predicts the position of sidechains close to the binding8

site. Empirically, we improve the state-of-the-art in site-specific-docking on the9

PDBBind benchmark. Especially when using in-silico generated structures, we10

achieve more than twice the performance of current methods while being more11

than 20 times faster than other flexible approaches. Although the model was not12

trained for cross-docking to different structures, it yields competitive results in this13

task.14

1 Introduction15

Proteins are the building blocks of life and are ubiquitous in biochemical processes of all organisms.16

They realize various biological functions by interacting with other biomolecules, such as other17

proteins or small ligands. The 3D structure of each protein governs the possible interaction partners18

and, consequently, determines its function. When a molecule (ligand) interacts with a protein19

(receptor) and binds to it, they form a new complex with a different 3D structure and function [Stank20

et al., 2016]. Accurately predicting these molecular interactions can give insight into the inner21

workings of biological processes and is thus a highly important task in computational biology and22

drug discovery [Kubinyi, 2006; Meng et al., 2011; Pinzi & Rastelli, 2019]. Molecular docking aims23

to predict these interactions by determining the 3D position of the ligand when bound to the receptor.24

In drug discovery campaigns, the processes underlying diseases are usually well-researched and25

specific targets can often be identified, which, if modified or inhibited, can potentially treat a26

disease [Weisel et al., 2009]. This means a specific part of the protein (e.g., a druggable pocket)27

is often known to be responsible for a biochemical interaction and is thus the target of a docking28

procedure [Zheng et al., 2012]. Site-specific docking incorporates prior knowledge of a binding site29

and limits possible docking poses of a given ligand to a specific receptor region. This reduces the30

search space by a large margin, simplifying the docking problem. Many machine-learning (ML)31

based approaches cannot account for prior knowledge of a pocket [Stärk et al., 2022; Lu et al., 2022;32

Corso et al., 2023], despite the need in practical applications for docking to a specific target. This is33

seen as one of the most significant limitations of current ML approaches [Yu et al., 2023].34
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DIFFDOCK-POCKET

Reverse Diffusion Process over Ligand Pose and Sidechain Torsionst=T t=0

Figure 1: Overview of our approach. The model takes as an input a ligand, an (in-silico generated)
protein structure, and the binding target. The process starts with random ligand poses (orange) and
sidechain conformations (magenta), which are gradually improved by a reverse diffusion process (left
to right) to represent meaningful results. The generative process modifies the translation, rotation,
and torsional angles of the ligand and the torsional angles of the receptor’s sidechain atoms to predict
a final pose for each. This is all done with the knowledge of a binding pocket (blue).

Therefore, we consider the task of pocket-level docking and additionally model receptor flexibil-35

ity near the binding site. When a ligand docks to a receptor, they both undergo conformational36

changes [Huang, 2017], with the sidechain atoms in the binding site displaying the most significant37

ones [Clark et al., 2019]. Understanding and modeling sidechain flexibility is critical in molecular38

docking [Teague, 2003], as it can directly influence the prediction accuracy [Zhao & Sanner, 2007;39

Hogues et al., 2018]. Many current methods either ignore this issue and model rigid receptors [Stärk40

et al., 2022; Lu et al., 2022; Corso et al., 2023], or adding flexibility significantly impacts the accuracy41

and runtime [Koes et al., 2013; McNutt et al., 2021], making them unsuitable for large-scale tasks42

such as screening drug candidates. We believe that fast, accessible, and reliable site-specific docking43

with flexibility can drive discovery in computational biology, especially in drug design.44

This paper takes a step towards solving this problem by proposing DIFFDOCK-POCKET: a diffusion-45

based model for pocket-level molecular docking with receptor sidechain flexibility inspired by the46

ideas of DIFFDOCK [Corso et al., 2023]. It uses diffusion over a reduced product space to predict47

sidechain and ligand confirmations, as illustrated in Figure 1. Moreover, our approach narrows the48

performance gap when docking to in-silico generated structures, which, while not exact, often provide49

strong approximations and are readily accessible.50

Our model demonstrates state-of-the-art performance in the PDBBind [Liu et al., 2017] docking51

benchmark, where we achieve a root mean squared deviation (RMSD) of less than 2Å in 49.8% of52

cases compared to 27.8% achieved by the best method evaluated with receptor flexibility. All other53

tested approaches suffered majorly in terms of accuracy and runtime when modeling the receptor as54

flexible (DIFFDOCK-POCKET is 25–90 times faster than other flexible approaches). When relying55

on in-silico generated protein structures, the model retains most of its capabilities for docking and56

sidechain predictions. We achieve scores of 41.7% and 39.5% for in-silico structures generated from57

ESMFold2 [Lin et al., 2022] and ColabFold [Mirdita et al., 2022] respectively. On the CrossDocked58

2020 benchmark [Francoeur et al., 2020], our model yields better pocket-normalized docking scores59

than other methods, despite some of the other approaches being specifically trained on this dataset.60

2 Related Work61

Molecular docking. Docking a small molecule to a protein is a complicated biochemical process62

governed by the energy of the interacting atoms. During docking, the protein and ligand atoms orient63

themselves and take on the conformation that results in the most energetically favorable binding64

configuration. Using this knowledge, traditional search-based models such as GLIDE, [Friesner et al.,65

2004; Halgren et al., 2004], MOLDOCK [Thomsen & Christensen, 2006], and AUTODOCK [Trott &66

Olson, 2010] minimize a scoring function that calculates the energy of a given configuration (based67

on the force fields or statistical potential recovered from experimental data). Approaches such as68

GNINA [McNutt et al., 2021] and DEEPDOCK [Méndez-Lucio et al., 2021] use ML to approximate69

this score function, while others such as SMINA [Koes et al., 2013] take a more classical approach.70
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Minimizing the scoring function over the whole search space can be challenging. However, since key71

binding regions are often already known through experimental data, the search space can be limited.72

Most approaches, especially classical ones, can typically limit the search space to this pocket rather73

easily. ML based approaches such as DIFFDOCK [Corso et al., 2023], EQUIBIND [Stärk et al., 2022],74

and TANKBIND [Lu et al., 2022] usually fail to account for binding pockets completely.75

Flexible docking. Almost all recent docking approaches model the ligand flexible [Huang, 2017;76

Koes et al., 2013; McNutt et al., 2021], but some fail to account for the changes that can occur in the77

protein [Friesner et al., 2004; Halgren et al., 2004; Stärk et al., 2022; Lu et al., 2022; Corso et al., 2023].78

These geometrical changes can play a crucial role in successfully modeling a binding process because79

already slightly different receptor conformations can change the energetically optimal structure [Zhao80

& Sanner, 2007; Hogues et al., 2018]. However, since predicting the position of each atom of a81

protein is a computationally expensive task, most algorithms used in practice nowadays model the82

proteins semi-flexible [Meng et al., 2011]. The parts of the amino acids that extend outwards from83

the α-carbon atom (i.e., the sidechain atoms) display more flexibility and undergo the majority of84

structural changes, especially near the binding site [Clark et al., 2019]. Search-based approaches such85

as GNINA or SMINA can include these atoms in their stochastic energy-optimization procedure.86

For ML models, modeling receptor flexibility can be challenging and is typically unsupported [Corso87

et al., 2023; Stärk et al., 2022; Lu et al., 2022]. NEURALPLEXER [Qiao et al., 2023], is a recent88

diffusion-based docking algorithm that can predict all atom coordinates of the protein and the ligand89

within a specified pocket by masking the target and predicting new coordinates. However, as of90

writing, no code is available.91

Diffusion. Previous work [Corso et al., 2023] has shown that generative modeling is well-suited92

for docking due to its ability to capture the stochastic nature of the biological process and its93

uncertainty. Score-based diffusion models [Song et al., 2021] define a continuous diffusion process94

dx = f(x, t) dt+ g(t) dw to apply to points of the data. Critically, this has a corresponding reverse95

SDE dx = [f(x, t)− g(t)2∇x log pt(x)]dt+ g(t) dw where only the score∇x log pt(x) is unknown.96

Throughout this paper, f(x, t) will be 0. Given an initial distribution p0 (the distribution of the97

data), if the evolving score is learned, the reverse equation can be numerically solved to produce new98

points of the underlying data distribution from random noise. For molecular docking, this means that99

beginning from a random starting conformation of the ligand, noise can be removed such that the end100

conformation will be the state of the ligand docked to the target protein.101

3 Method102

Given a ligand and a protein, flexible docking models predict the geometrical structure of both the103

ligand and the protein. Assuming a fixed scaffold, the structure of this binding complex is uniquely104

described by its atom positions in the three-dimensional space. For a ligand with n atoms, and a105

protein with m flexible atoms, the space of possible predictions is in R3(m+n). The large space106

w.r.t. the number of data points available makes docking a challenging problem. Especially for107

large proteins with thousands of atoms, searching for an optimal conformation of all positions is108

computationally infeasible.109

The first step we take is to make the search space smaller by reducing its dimension using knowledge110

about the rigidity of different molecular transformations. Instead of modeling the protein and ligand111

with all their 3D atom coordinates, the conformations can also be described by the changes the ligand112

and the sidechains undergo during binding. The main biochemically possible changes are the rigid 3D113

translation or rotation of the complete ligand w.r.t. the receptor and the rotation of the torsion angles114

of the ligand’s chemical bonds. Similarly, the backbone of the receptor stays mostly rigid, and mostly115

the torsional angles of the receptor sidechain atoms change. These transformations form an algebraic116

group structure and together span a 3 + 3 + k + ℓ dimensional manifold, which we refer to as the117

product space. k, ℓ are the number of torsion angles in the ligand and protein respectively. While this118

does not cover all possible conformations of the protein and ligand, it accounts for the most prominent119

changes and keeps properties such as the rather stable bond lengths fixed. By applying the knowledge120

of possible modifications and searching in the product space, we reduce the dimensionality of the121

search (see Appendix A), excluding chemically unlikely structural changes. This way, we can aim122

to learn the scores on the tangent spaces of the transformation manifold and only predict these four123

lower-dimensional changes to the initial structure.124
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3.1 Site-Specific Docking125

Since docking sites are often known or chosen in advance, we can further reduce the space and126

speed up the search for an optimal conformation by including this prior information. With this, we127

can expect more accurate results while requiring less computational effort. Various ways exist to128

condition the model to a known binding pocket, depending on the underlying method used. Diffusion129

models build on the idea that they iteratively refine a random initial configuration. To condition130

the ligand pose on a binding pocket, we propose to center the ligand’s initial random configuration131

around the pocket’s center while also limiting the maximum translation our model can predict. With132

this change, all ligand poses are guaranteed to be within the target pocket, but the model still needs133

to predict a (small) translation to account for the random noise and different poses. Formally, the134

random ligand translation ztr will be sampled from a normal distribution with a relatively small135

variance. This will have no effect on the initially random rotation and torsion angles.136

Figure 2: Pocket reduction.
Only retain amino acids close
to the ligand (green) and dis-
card all others (gray).

However, for large proteins, this would still mean that our approach137

needs to consider atoms far away, although the atoms close to the138

binding site influence the actual binding procedure most. By ex-139

ploiting this fact, we decided to discard all amino acids that are too140

far away from the target binding site, as depicted in Figure 2. This141

focuses the model’s attention on the binding site and reduces all pro-142

teins to a similar size. Additionally, this reduced view of the protein143

allows us to represent even large proteins using only a comparatively144

small subset of amino acids. With this, all atom positions can be145

used as input to the model instead of simply using the coordinates146

of the backbone (C-α atoms), as was done in previous work [Corso147

et al., 2023]. This allows our model to learn more physics-informed148

predictions, potentially improving the accuracy.149

We require knowledge of the pocket center position in R3 and a radius indicating the pocket’s size150

to center the translational noise and reduce the protein. As for the pocket size, we use the radius of151

the smallest sphere centered at the mean of the ligand that can fit all atoms. We then also add an152

additional buffer of 10Å to the radius to retain the surrounding context of the pocket for the model to153

make predictions. If any atom of an amino acid falls within this distance from the pocket center, the154

whole amino acid is kept, whereas all other amino acids are discarded. Defining the pocket center155

can be a bit more challenging because, in practice, one might be able to infer the general area where156

a ligand might dock but cannot pinpoint the exact center of the ligand. To avoid bias in the training157

data, we calculate the pocket center by taking the average positions of the C-α atoms within 5Å of158

any ground truth ligand atom. This technique aligns with a setting where one would visually analyze159

the protein and suspect the pocket location. By only using the rigid backbone to calculate the center,160

this definition of a pocket works well, even when the protein has a different sidechain structure.161

3.2 Flexible Sidechains162

In principle, any of the remaining amino acids can be modeled flexibly. However, implementing163

flexibility for all residues would again increase computational complexity (although manageable with164

this reduced product space) without providing much benefit as it has been shown that flexibility is165

mostly restricted to the residues close to the binding site [Clark et al., 2019]. Therefore, we follow166

the convention from other docking algorithms [McNutt et al., 2021], and model only amino acids167

which have at least one atom within 3.5Å of any ligand atom as flexible.168

Once the flexible sidechains have been selected, the concrete rotatable bonds have to be determined. A169

graph is constructed for each residue based on the chemical order of atoms inside the sidechain. Each170

connecting edge then describes one rotatable bond (refer to Section B.1). This way, the conformation171

of the sidechains can be approximately described by the torsion angles of each rotatable bond, and172

the model can learn to predict the score of these angles. Formally this means that depending on173

the concrete amino acid a, the model predicts ℓa ordered torsion angles χa
1 , . . . , χ

a
ℓ . Rotating the174

torsion angles of each sidechain bond of the protein y by the predicted angles χ yields the new atom175

positions ỹ. Although all angles χ are predicted simultaneously at each timestep, they are iteratively176

refined by the diffusion process. This has the advantage that the angles can influence each other177

without sacrificing performance compared to doing it autoregressively.178
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3.3 Model Architecture and Training179

Models. The model architecture we are using is inspired by the structure of DIFFDOCK [Corso180

et al., 2023] and consists of two different models which are executed in sequence during inference:181

the score model and the confidence model. The aim of the score model is to learn the (diffusion)182

scores of the tangent spaces of the transformation manifolds: T3 for translation, SO(3) for rotation,183

SO(2)k and SO(2)ℓ for the torsion angles of the ligand and flexible sidechains respectively. With184

the knowledge of the scores during inference, we can take a protein with pocket and a ligand structure185

in 3D space and produce i ∈ N different complex structures
(
x̃(1), ỹ(1)

)
, . . . ,

(
x̃(i), ỹ(i)

)
.186

The confidence model is then used to rank each protein-ligand prediction such that the best-predicted187

structures can be selected. Our training routine and objective are defined so that our confidence188

model learns to predict the accuracy of generated binding structures by considering both the ligand’s189

docking success and the similarity of flexible sidechains to the bound structure. The output of the190

confidence model is a logit and important for real-world application since it allows practitioners to191

judge the accuracy of the predictions without access to the ground truth.192

Architecture. The architecture between both models is very similar and mostly differs in the193

last few layers. Since we are learning the distributions on the transformation space instead of the194

three-dimensional positions, we can formulate a desirable generalization of the model by exploiting195

attributes of group actions. Mainly, we want our model to recognize the similarity or equivalence196

of complex structures that can be transformed into each other using distance-maintaining (SE(3))197

transformations. Therefore, we expect our output scores on the rotation and translation tangent spaces198

to be SE(3)-equivariant and our torsion angle scores to be SE(3)-invariant. We achieve this by using199

SE(3)-equivariant convolutional networks, so-called tensor field networks [Thomas et al., 2018;200

Geiger et al., 2022] that encode the data into irreducible representations of the O(3) group.201

In our architecture, both the ligand and protein are represented as geometric graphs where nodes202

represent atoms and edges are between close neighbors or chemical bonds. There are edges between203

ligand-ligand nodes, receptor-receptor nodes, and also receptor-ligand nodes. Moreover, we also204

define a graph for each amino acid in the receptor instead of every atom. This representation follows205

multiple convolutional layers, where we make use of message passing between the nodes based on206

the node and edge features. In the end, this yields representations for each atom.207

After the convolutional layers, the architecture between the score and confidence model differ, as208

they have different objectives. The score model needs to output a translational score, a rotational209

score (around the center of the mass of the ligand), and one torsional score for each of the k rotatable210

bonds of the ligand. To allow for a flexible receptor, the score model also needs to predict ℓa torsional211

scores, one for each rotatable bond in every flexible amino acid a. For this, we use a pseudotorque212

layer as introduced by [Jing et al., 2022] similar to the architecture predicting the torsion scores of213

the ligand. For the concrete diffusion process on torsional angles, we refer to [Jing et al., 2022; Corso214

et al., 2023]. As opposed to the score model, the confidence model is not diffusion-based and thus215

does not predict any scores. The output is a single SE(3)-invariant scalar, which is predicted by an216

MLP that uses the flexible atom and ligand representations. It uses the predicted structures as input217

and aims to determine the probability that the docking is accurate.218

Training. We use diffusion score-matching [Song et al., 2021] to train our score model by sampling219

the transformations from the perturbation kernels, applying them to the input structures of our model,220

and minimizing the theoretical denoising score matching loss function for each transformation T221

θ∗ = argmin
θ

∑
trf∈T

Et

{
λ(t)Ex(0)Ex(t)|x(0)

[∥∥strf
θ (x(t), t)−∇x(t) log p

trf
0t(x(t) | x(0))

∥∥2
2

]}
, (1)

as described in Song et al. [2021], with λ(t) a positive weighting function for each time t. The222

minimization is done while iterating through the conditional distributions corresponding to each223

ligand-protein pair. This formulation is equivalent to minimizing the distance between the real and224

predicted scores of the conditional distribution.225

To train the confidence model, we first sample diverse ligand and sidechain configurations with the226

score model. The predictions are then compared with the ground truth training data to assess their227

quality. The confidence model learns to predict this quality by training it with a binary cross-entropy228

loss on those generated structures to predict if the sampled configuration is plausible.229
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Inference. To predict a docked complex, we start from an arbitrary ligand and flexible sidechain230

conformations by applying random transformations in all degrees of freedom. We then use the score231

model to predict the transformation scores of the conditional distributions at each timestep and use232

the output to construct the reverse stochastic equation. Intuitively, by solving the reverse diffusion233

equation, we iteratively move the samples to regions with high densities of the underlying distribution234

by following the vector field produced by the predicted scores. Once the diffusion process is finished,235

the samples are ranked based on their quality estimated by the confidence model.236

4 Results237

Obtaining real-world data in molecular biology can be challenging, and the limited available data238

must be used meaningfully. This can make it difficult for docking algorithms when the distribution of239

the structures changes. In this section, we will demonstrate that our model generalizes well beyond240

the data seen and exhibits high performance over different tasks, including docking to computationally241

generated structures and docking to proteins originally bound to a different ligand. We will also242

show that our model can be used to improve the sidechain configuration of in-silico generated protein243

structures to better account for the ligand-bound structure. The source code and documentation244

of our model is available at https://anonymous.4open.science/r/DiffDock-Pocket-AQ32,245

and the versatile interface allows it to be run with many different formats, pockets, and with any246

number of flexible amino acids.247

Setup. As a training set, we relied on PDBBind [Liu et al., 2017], a subset of PDB [Berman et al.,248

2003], with a time-based split and a mixture of crystal and ESMFold2 generated structures. In this249

section, we evaluate it on the unseen testset. We either used the crystal structure from PDBBind250

or computationally generated structures with the same amino acid sequence aligned to the crystal251

structure. Similar studies for evaluating structures generated by ColabFold [Mirdita et al., 2022], a252

faster version of AlphaFold2 [Jumper et al., 2021], can be found in Appendix E. However, although253

the model has never seen ColabFold structures during training, the performance is similar to ESMFold254

structures. Further, we will also be evaluating our model on the CrossDocked 2020 dataset [Francoeur255

et al., 2020]. This dataset contains similar binding pockets, with different ligands docked to these256

pockets, and is sometimes used to train docking algorithms [McNutt et al., 2021].257

Metrics. To evaluate the quality of a docking prediction, we can compare how much the predicted258

ligand pose differs from the ground truth position. Commonly, the root mean squared deviation259

(RMSD) of the predicted and ground truth ligand atom position pairs is used for that. A pose260

prediction with an RMSD below 2Å is considered to be approximately correct [Alhossary et al., 2015;261

Hassan et al., 2017; McNutt et al., 2021], so we calculate the percentage of predictions under this262

threshold. We also compare the median RMSD of the predictions for a better grasp of their quality.263

To evaluate the predictions of the sidechain atoms, we rely on a similar metric, namely the RMSD264

of the sidechain atoms (or SC-RMSD) to the ground truth holo crystal structure. As the position265

of the sidechains shows less variation, we decided to use an SC-RMSD threshold of 1 for the main266

comparisons instead, but also show results for different thresholds (see Appendix F).267

In all cases, even when using computationally generated structures as input, the holo crystal structure268

of the PDBBind dataset is always considered the ground truth. However, it is important to note269

that in-silico generated structures are often considerably different from the ground truth (compare270

Figure 10). A perfect match is thus unrealistic, especially for the SC-RMSD, as the conformations271

also differ in bond lengths. To compensate for this fact, we introduce a relative measure that compares272

the SC-RMSD before and after the prediction.273

Docking performance. We are comparing our model to the freely available state-of-the-art search-274

based methods GNINA and SMINA, as well as the diffusion-based model DIFFDOCK (which275

performs blind docking). Results are shown in Table 1. Our model is evaluated for drawing 10 and 40276

samples, where we present metrics for the top-1 prediction, which corresponds to the highest-ranked277

prediction from the confidence model, as well as for the top-5 predictions, which involve selecting278

the most accurate pose from the five highest-ranked predictions.279

Our approach outperforms both search-based methods and DIFFDOCK in all instances, even when280

only drawing 10 samples. For bound protein docking with predicting 40 samples, we achieve an281

approximately correct docking pose in 49.8% of instances. In rigid docking, GNINA also performs282

well in this task, achieving 42.7%, but no other compared method with flexibility is competitive at283
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this benchmark (27.8%). We can see that current methods suffer from a substantial loss in docking284

accuracy when introducing flexibility while also requiring significantly more time to predict poses285

(and sidechains). We attribute this to the fact that the search space grows exponentially with each286

atom position, which limits search-based approaches.287

Table 1: PDBBind docking performance. This table compares the performance of different docking
methods on computationally generated structures and crystal structures. Methods that do not model
the receptor as flexible, have been marked with the keyword rigid. All methods other than DIFFDOCK
use site-specific docking and use the same pocket definition (i.e., the mean of C-α atoms within
5Å of any ligand atom). For a more detailed explanation of how these numbers were computed for
existing approaches, see Appendix D. The numbers for the methods highlighted with a * were taken
from Corso et al. [2023].

Apo ESMFold Proteins Holo Crystal Proteins
Top-1 RMSD Top-5 RMSD Top-1 RMSD Top-5 RMSD Average

Method %<2 Med. %<2 Med. %<2 Med. %<2 Med. Runtime (s)

DIFFDOCK (blind, rigid)* 20.3 5.1 31.3 3.3 38.2 3.3 44.7 2.4 40
SMINA (rigid) 6.6 7.7 15.7 5.6 32.5 4.5 46.4 2.2 258
SMINA 3.6 7.3 13.0 4.8 19.8 5.4 34.0 3.1 1914
GNINA (rigid) 9.7 7.5 19.1 5.2 42.7 2.5 55.3 1.8 260
GNINA 6.6 7.2 12.1 5.0 27.8 4.6 41.7 2.7 1575

DIFFDOCK-POCKET (10) 41.0 2.6 47.6 2.2 47.7 2.1 56.3 1.8 17
DIFFDOCK-POCKET (40) 41.7 2.6 47.8 2.1 49.8 2.0 59.3 1.7 61

Furthermore, when docking to computationally generated structures, we achieve four times higher288

results as the best search-based method GNINA and nearly double the previous state-of-the-art289

DIFFDOCK on top-1 predictions. When run on GPU hardware, our model is also significantly faster290

than search-based methods (especially with flexibility modeling turned on). This can be extremely291

useful for practitioners because this allows them to use DIFFDOCK-POCKET for high-throughput292

tasks, even when the experimental structures are unavailable.293

Sidechain prediction quality. All flexible methods investigated predict the sidechain positions294

jointly with the ligand pose. We now investigate the quality of these predictions for SMINA and295

GNINA (we do not compare to DIFFDOCK as it is unable to model flexible residues). Table 2296

illustrates the performance similarly to the docking results. Both SMINA and GNINA fail to predict297

accurate sidechains for computationally generated structures and crystal structures. Our approach298

achieves good sidechain reconstruction in 33.3% and 49.2% of cases for computationally generated299

structures and crystal structures respectively.300

Table 2: PDBBind sidechain performance. Comparing the predicted sidechains of the different
models with different inputs to the ground truth crystal structures.

Apo ESMFold Proteins Holo Crystal Proteins
Top-1 SC-RMSD Top-5 SC-RMSD Top-1 SC-RMSD Top-5 SC-RMSD

Method %<1 Med. %<1 Med. %<1 Med. %<1 Med.

SMINA 0.6 2.4 1.8 2.0 4.7 1.8 8.3 1.4
GNINA 0.6 2.5 1.8 2.0 3.3 1.7 7.7 1.4

DIFFDOCK-POCKET (10) 33.3 1.2 44.6 1.1 49.2 1.0 58.6 0.9
DIFFDOCK-POCKET (40) 32.6 1.2 44.4 1.1 48.7 1.0 59.2 0.9

The in-silico generated structures already have a median SC-RMSD of 1.5Å and 20.5% of structures301

have an SC-RMSD of less than 1Å. This means that the sidechain predictions of SMINA and GNINA302

are worse than those of structure generation algorithms without access to information about the ligand.303

This becomes more apparent when investigating these numbers visually in Figure 3. Both score-based304

methods improve the sidechains only in less than 10% of cases. Overall, DIFFDOCK-POCKET305

predicts sidechains that are substantially closer to the ground truth.306

Cross-docking performance. To demonstrate that the model can generalize to different scenarios,307

we evaluated it on the task of pocket-level cross-docking, as seen in Table 3. Our model achieves a308

pocket-normalized RMSD of less than 2Å in 28.6% of instances, compared to the best other method309
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Figure 3: Quality of predicted sidechains for in-silico structures. Left: The cumulative distribution
function shows how many instances have an SC-RMSD below a certain threshold to the holo structure.
Right: The relative SC-RMSD between the structures before and after the predictions. The optimal
line is computed by conformer matching the in-silico structures to the crystal structure.

of 24.4%. As for the overall accuracy, GNINA yields the best results. Brocidiacono et al. [2023]310

argue that the pocket-normalized score is more important since the size of the dockings per pocket311

is unevenly distributed. These results for our model are especially impressive considering that a)312

cross-docked structures were never seen during training, but some of the other approaches trained313

with this data, and b) the definition of the pocket center was out of distribution for our model. When314

we use the available data but compute the center of the pocket the same way as we did during training,315

our model achieves substantially higher results (compare Section F.5). This benchmark shows that316

DIFFDOCK-POCKET generalizes well to unseen structures and is suitable for a wide range of tasks.317

Table 3: Cross-docking performance on CrossDocked 2020. Evaluation of the top-1 RMSD
between different methods on the CrossDocked 2020 testset with complexes removed that were seen
during training. The pocket-normalized percentage is presented for each value, and the overall score
is listed in brackets. For the pocket-normalized score, the average performance on each pocket is
reported instead of the performance across all complexes. Numbers for the methods marked with a *
were taken from Brocidiacono et al. [2023].

Top-1 RMSD Average
Method %<2 %<5 Runtime (s)

VINA* 11.7 (15.6) 40.2 (37.9) 73.7
GNINA* 21.5 (23.5) 51.7 (47.3) 51.6
DIFFDOCK* (blind) 17.3 (11.6) 51.7 (47.3) 98.7
PLANTAIN* 24.4 (15.2) 73.7 (71.9) 4.9
DIFFDOCK-POCKET (10) 28.3 (17.7) 67.5 (50.2) 22.0
DIFFDOCK-POCKET (40) 28.6 (18.5) 67.9 (49.4) 87.2

5 Conclusion318

In this paper, we presented DIFFDOCK-POCKET, a fast diffusion-based generative model to dock319

small molecules. In contrast to many other ML-based approaches, we are able to incorporate prior320

knowledge of the binding pocket and model the protein as semi-flexible. Our approach improves321

the state-of-the-art in almost all tested instances while also being significantly faster. Traditional322

approaches exhibit a drastic decline in runtime and accuracy when modeling receptor flexibility,323

which is not the case for our approach. A similar trend can be observed when using computationally324

generated structures, with which our approach works exceptionally well and loses almost no accuracy.325

Even when presenting the model with out-of-distribution data and pockets, our model improves326

the score for the pocket-normalized RMSD for CrossDocked2020 compared to existing methods.327

Especially in combination with in-silico generated structures, which can be generated quickly, we328

believe that our model opens new capabilities in high-throughput tasks, such as drug screening.329
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A Bound on Reduced Prediction Space457

As mentioned in the main text, our model makes predictions in a reduced, lower-dimensional space458

instead of predicting all atom positions. We can assess the reduction by counting the degrees of459

freedom of translations on the ligand and flexible sidechains as a function of their number of atoms.460

Sidechains have m− r degrees of freedom for m atoms on r residues, since each residue has mr − 1461

torsion angles (where mr is the number of atoms in one residue). Since the maximum number of462

torsional angles in an amino acid (counted by our algorithm) is five, we can further bound m− r with463

0.8m. Similarly, we can bound the ligand degrees of freedom by n − 2 + 6, 6 for the freedom of464

rotations and translations, and n− 2 the degrees of freedom from the torsion angles. This is because465

we can use an upper bound by assuming a tree-like bond structure between the ligand atoms, which466

means n − 1 bonds for n atoms and, therefore n − 2 degrees of freedom (in case there is a cycle467

the ligand graph would have one more bond but it would also lose a degree of freedom from the468

restriction of the cycle structure). We can then compare the dimensions of 0.8m+ n+4 to 3(m+ n)469

and conclude that the three-dimensional coordinate space clearly has magnitudes larger (about three470

times as many) degrees of freedom, already for molecules with a small number of atoms.471

B Model Details472

B.1 Sidechain Flexibility473

The flexible residues can be automatically determined based on the distance to the ground truth474

ligand pose or, at inference, manually specified when there is no access to a ground truth ligand. We475

then select residues with atoms inside a rectangular prism around the ligand as also used in previous476

works [McNutt et al., 2021]. This means that with a “radius” of r every residue is selected where for477

the coordinates x, y, z any atom of this amino acids it holds that478

min(ligx)− r < x < max(ligx) + r

min(ligy)− r < y < max(ligy) + r

min(ligz)− r < z < max(ligz) + r,
(2)

where ligx, ligy and ligz mean the collection of x, y and z coordinates of the ligand atoms. This479

defines a prism around the ligand with an additional radius r. For a flexible radius, we chose 3.5Å480

as modeling flexibility for sidechains within this radius to the ligand was found to be a reasonable481

representation for structural changes happening upon ligand binding in Meli et al. [2021]. During482

inference, we cannot assume to have any information regarding the ligand position therefore instead483

of calculating a prism around the ligand, the user needs to set them manually.484

To determine the concrete bonds at which torsional angles need to be applied, we build a graph485

for each amino acid according to the chemical structure. Each found rotatable bond is stored as486

the corresponding edge and subgraph that starts at the second vertex/end of the edge, onto which a487

rotation would be applied. See Algorithm 1 for the implementation.488
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Algorithm 1: Graph Traversal to Compute Rotatable Bonds
Input: Atom positions x, atom names N
Output: Rotable bonds B, rotation maskM
(x,N )← removeHydrogens(x,N );
G← constructDirectedGraph(x,N );
for e ∈ edges(BFS(G)) do

GU ← toUndirected(G);
GU ← removeEdge(GU , e);

if not isConnected(GU ) then
c← connectedComponents(GU );

if size(sorted(c)[0]) > 1 then
M.append(c[1]);
B.append(e);

end
end

end

489

B.2 Sidechain Conformer Matching490

Figure 4: Sidechain con-
former matching. Optimize
the sidechain torsional angles
(green) of the computationally
generated structure (gray) to
minimize the distance to the
ground truth positions (yel-
low).

When learning the torsional angles with a diffusion approach, we491

need access to a protein with the ground truth angles. When us-492

ing ligand-bound (i.e., holo) crystal structures during training, this493

would not pose a problem as this would already be the ground truth494

data. However, we need to know realistic sidechain conformations495

for computationally generated structures. This is because the posi-496

tions of the sidechain atoms can be different, for instance, when the497

predicted structure is non-ligand bound (apo), bound to a different498

molecule, or simply inaccurate. To make matters worse, not only the499

torsional angles between the crystal structures and the in-silico gen-500

erated structures are different, but also the bond lengths. This shift501

can be attributed to other (non-prominent) conformational changes502

the protein undergoes (e.g., the lengthening or shortening of bonds)503

or again to inaccuracies of predictive models when using synthetic504

data.505

To still be able to expose the model to different structures, we prepared the computationally generated506

structures with a procedure referred to as sidechain conformer matching. The idea is to align the507

torsional angles of the computationally generated structures to the ground truth ligand-bound crystal508

structures while keeping the rigidity of the bonds, as can be seen in Figure 4. Similarly to Jing et al.509

[2022], we define the search for these structures as a minimization problem of the RMSD between510

the ground truth structure y and in-silico structure y′ over the torsional angles of the flexible amino511

acids. When referring to the ligand as x and assuming we have a sidechain for amino acid a with ℓa512

rotatable bonds χa
1 , . . . , χ

a
ℓ the goal can be phrased as ℓ minimization problems for each amino acid513

match(x,y,y′) = argmin
ỹ∈{apply(y′,χ)}

RMSD(y, ỹ) · penalty(x, ỹ). (3)

The additional penalty in the optimization goal was introduced to make the matched proteins more514

realistic. It aims to reduce the number of steric clashes (i.e., atoms that would be too close together),515

and is described in more detail in Appendix C. The minimization is solved with differential evolution,516

which iteratively combines potential solutions of a population to converge to the global minimum.517

We can then use the computationally generated structure where the sidechains have been conformer-518

matched with the bound structure in training. This matching still leaves some distance between the519

structures (as seen in Figure 4) but aligns with our definition of a semi-flexible receptor.520
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B.3 Architecture521

The protein and the ligand structures can be represented as geometric graphs, where nodes represent522

atoms and edges are constructed between ligand-ligand, receptor-receptor and ligand-receptor atoms523

based on different criteria. We construct receptor-receptor edges between an atom and its k nearest524

neighbors, ligand-ligand edges corresponding to bonds between the ligand atoms that are featurized by525

their bonding type, as well as the edges between atoms under a cutoff distance of 5Å. The atom nodes526

of the ligands are featurized with their chemical properties. Additionally to all of the receptor atoms,527

we also define a graph where each node corresponds to a residue, where the nodes are featurized528

with embeddings of the ESM2 language model [Lin et al., 2023]. Edges are constructed between529

residues under a cutoff distance and cross edges between residues and ligand atoms are constructed530

based on a distance threshold that is calculated with the diffusion noise. Several convolutional layers531

are concatenated in which the nodes pass messages using tensor products based on the node features532

and irreducible representations of the edges. The number of convolutional layers differs between the533

score and confidence model.534

B.4 Training the Confidence Model535

To train the confidence model, we trained a smaller score model (in the same way as the main/large536

model) that predicts more diverse but less accurate ligand poses and protein structures. The predictions537

are then evaluated against the ground truth to create a label that indicates whether the RMSD is < 2Å538

and the RMSD of the flexible atoms in the sidechains is < 1Å. The confidence model then learns to539

predict a label of 1 iff the prediction of the score model is good in terms of docking and sidechain540

atom positions. The model is then trained with a binary cross-entropy loss. No diffusion is involved541

in the training of the confidence model.542

B.5 Training and Inference of the Score Model543

We use ESMFold2 predicted structures conformer-matched to the PDBBind crystal structures to train544

the score model. If the RMSD in the pocket between the ground truth and in-silico structure is larger545

than 2Å, we assume that ESMFold was unable to predict a good structure and use the ground truth546

holo structure instead. The training and inference procedures were inspired by DIFFDOCK and can547

be seen in Algorithm 2 and Algorithm 3 respectively.548

Algorithm 2: Training Epoch
Input: Training pairs: {(x⋆,y⋆), }, flexibility radius: r, pocket radius: p with buffer
foreach x⋆,y⋆ do

Let x0 ← argminx†∈Mtr,rot,tor,x⋆ RMSD(x⋆,x†);
Let
ỹ⋆ ← {res ∈ y⋆ : ∃ atom = (ax, ay, az) ∈ res, ax ∈ [minx(x

⋆)−r,maxx(x
⋆)+r], ay ∈

[miny(x
⋆)− r,maxy(x⋆) + r], az ∈ [minz(x

⋆)− r,maxz(x
⋆) + r]};

Let y⋆
0 ← argminy†∈Msc−tor,y⋆ RMSD(ỹ⋆, ỹ†) · penalty;

Let pocket center = pc← average of positions of Cα ∈ {residue ∈ y⋆ ∃atom = a ∈
residue for which ∃ ligand atom l ∈ x0∥a− l∥< p} if the set is empty, then closest Cα;

Let y0 ← {res ∈ y⋆
0 : ∃a ∈ res for which ∃l ∈ x0 : ∥a− l∥ < circumradius(y⋆

0) + buffer};
Sample t ∼ U([0, 1]);
Sample ∆r,∆R,∆θl,∆θsc, from diffusion kernels
ptr
t (· | 0), prot

t (· | 0), ptorl
t (· | 0), ptorsc

t (· | 0);
Compute xt by applying ∆r,∆R,∆θl to x0;
Compute yt by applying θsc to ỹ0;
Predict scores α ∈ R3, β ∈ R3, γ ∈ Rn, δ ∈ Rm = s(xt,yt, t) ;
Take optimization step on loss
L = ||α−∇ log ptr

t (∆r | 0)||2 + ||β −∇ log prot
t (∆R | 0)||2 +∣∣∣∣γ −∇ log ptorl

t (∆θl | 0)
∣∣∣∣2 + ∣∣∣∣δ −∇ log ptorsc

t (∆θsc | 0)
∣∣∣∣2

end

549
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Algorithm 3: Inference Algorithm
Input: RDKit prediction c, generated protein structure d, flxibility radius r, pocket radius p with

buffer (both centered at origin)
Output: Sampled ligand pose x0, sampled protein pose y0 with applied pocket knowledge
Let pocket center = pc← average of positions of Cα ∈ {residue ∈ d ∃atom = a ∈

residue for which ∃ ligand atom l ∈ c∥a− l∥< p};
Let d⋆ ← {res ∈ d : ∃a ∈ res, ∥a− pc∥ < circumradius(c) + buffer};
Sample θl;N ∼ U(SO(2)k), RN ∼ U(SO(3)), rN ∼ N (0, σ2

tr(T )) θsc,N ∼ U(SO(2)m);
Define ỹk from yk as {residue = res ∈ yk : ∃atom = a ∈ res, ∥a− pc∥< r};
Randomize ligand and sidechains by applying rN , RN ,θl;N , to c and θsc;N to d̃⋆;
for n← N to 1 do

Let t = n/N and ∆σ2
tr = σ2

tr(n/N)− σ2
tr((n− 1)/N) and similarly for

∆σ2
rot,∆σ2

torl ,∆σ2
torsc ;

Predict scores α ∈ R3, β ∈ R3, γ ∈ Rk, δ ∈ Rm,← s(xn,yn, t);
Sample ztr, zrot, ztorl , ztorsc from N (0,∆σ2

tr),N (0,∆σ2
rot),N (0,∆σ2

torl),N (0,∆σ2
torsc)

respectively;
Set ∆r← ∆σ2

trα+ ztr and similarly for ∆R,∆θl,∆θsc;
Compute xn−1 by applying ∆r,∆R,∆θl, to xn;
Compute yn−1 by applying ∆θsc, to ỹn;

end
Return x0,y0;

550

B.6 Low-Temperature Sampling551

Due to the maximum likelihood training, the predictions of the score model can be dispersed over552

multiple modes of the target distribution. We perform low-temperature sampling to prevent this553

problem of overdispersion at inference due to model uncertainty and thereby emphasize the modes of554

the distribution. This is done via the approach proposed by Ingraham et al. [2022, Apx. B]. For this,555

we have determined the temperature values for our score model that maximize its performance on the556

validation set.557

C Steric Clashes558

Steric clashes play a fundamental role in molecular interactions and structural biology. These clashes559

occur when atoms, or groups of atoms, come too close to each other, resulting in repulsive forces that560

hinder their ability to adopt certain conformations. In the context of generative modeling of complex561

structures, these clashes occur when atoms or groups of atoms in a three-dimensional structure are562

placed too closely together, violating the principles of molecular geometry and leading to unfavorable563

interactions. In essence, steric clashes represent a clash of physical space, as atoms cannot occupy the564

same space simultaneously due to their electron clouds. Understanding and mitigating steric clashes565

are important to check in generative modeling because they can lead to the generation of incorrect or566

physically unrealistic structures.567

To quantify and evaluate steric clashes, several computational methods have been developed. One568

common approach involves computing the overlap between van der Waals radii of atoms. The van der569

Waals radii represent the approximate size of atoms and are typically defined as the distance at which570

the attractive van der Waals forces balance the repulsive forces between two atoms. To detect steric571

clashes, we assessed whether the van der Waals radii of atoms or groups of atoms in a molecular572

structure overlap by at least 0.4 Angstroms (Å). If the overlap exceeds this threshold, it indicates a573

steric clash, suggesting that the molecular conformation is unfavorable due to repulsive forces. For574

the concrete values, we followed the tables from Mantina et al. [2009].575

C.1 Reducing Steric Clashes in Protein Sidechain Alignment576

To train our flexible model, we align the sidechains of the unbound (apo) ESMFold protein with the577

bound (holo) crystal structure with conformer matching. Especially in cases where the predicted578

atomic structure differs from the actual true structure, simply reducing the RMSD between those two579
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structures might lead to unrealistic proteins. For example, there could be a lot of steric clashes or the580

sidechain atoms completely turned away from the pocket. We introduced an additional penalty term581

when aligning the two protein structures to overcome these issues. The term that produced the most582

reasonable outputs (with regard to the number of steric clashes) was583

RMSD(Crystal Sc, S̃c) ·

√∑
l∈Lig,s∈Sc e

−(s−l)2√∑
l∈Lig,s∈Sc e

−(s−l)2(s− l)2
. (4)

s and l are the positions of atoms of the sidechains and ligands respectively.584

We calculate the pairwise distances between the ligand and sidechain atoms, with an exponential585

weighting scheme applied to emphasize closer atoms of the protein. The weights are calculated586

based on the exponential of the negative distances, indicating a stronger penalty for closer atomic587

interactions. The resulting weighted distances are then summed and normalized, contributing to an588

overall penalty term incorporated into the calculation of the root-mean-square deviation (RMSD) of589

the modified atoms. This RMSD, adjusted by the weighted penalty term, measures the structural590

deviation while accounting for steric clashes. The method reduces clashes by penalizing close atomic591

contacts and promoting greater separation between the ligand and protein, as seen in Table 4. While592

conformer matching already reduces the number of steric clashes, this penalty can further reduce593

the number. All RMSDs that are shown in this paper are calculated by removing the hydrogens and594

computing the distance between all atoms, not just the C-α backbone.595

Table 4: Steric clashes for in-silico structures. This table analyzes the number of steric clashes
between the receptor and the ligand.

Percentage with Average Number of
Method Steric Clashes Steric Clashes

Crystal structures 14.3 0.2

ESMFold2 structures 76.7 19.1
Conformer-Matched 68.3 15.4
Conformer-Matched w/ penalty 67.7 13.9

C.2 Model Results596

Given this definition of steric clashes, we can evaluate the different models, as done in Table 5. It597

can be seen that flexible models produce substantially more steric clashes, especially when executed598

on computationally generated structures. This aligns well with the fact that the ESMFold structure599

itself already exhibits many steric clashes. Our model produces more steric clashes than search-based600

methods on in-silico structures and drastically more on the crystal structure. For the ESMFold601

predictions, this may be because our model achieves more than four times the docking performance602

on this data, and the other methods typically predict wrong ligand poses, which are possibly far603

away (see high median RMSD). For example, SMINA predicts the least number of steric clashes, but604

also has the lowest docking performance. However, this table definitely highlights a shortcoming of605

our approach for at least crystal structures. Those shortcomings of ML docking methods have been606

discussed by Buttenschoen et al. [2023] and can be reduced by performing small optimizations of the607

predicted docking poses.608

Table 5: Steric clashes for top-1 predictions. Comparison of the number of steric clashes between
the receptor and ligand atoms using the predictions of different models and structures.

Apo ESMFold Proteins Holo Crystal Proteins
Percentage with Average Number of Percentage with Average Number of

Method Steric Clashes Steric Clashes Steric Clashes Steric Clashes

SMINA (rigid) 0.9 0.1 0.0 0.0
SMINA 60.4 12.8 1.1 0.0
GNINA (rigid) 5.4 0.4 1.7 0.1
GNINA 52.7 12.7 0.3 0.0

DIFFDOCK-POCKET (10) 69.3 9.8 57.7 4.4
DIFFDOCK-POCKET (40) 69.0 9.2 55.3 4.1
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D Benchmarking Details609

In our experimentation, we used NVIDIA RTX 6000 GPUs to conduct the assessment of our model’s610

performance. To ensure robustness and reliability, we executed the model three times, each run611

initiated with seeds 0, 1, and 2. It is crucial to note that while seeds were employed to initialize the612

runs, achieving 100 percent reproducibility proved challenging due to the inherent non-deterministic613

nature of certain operations when executed on a GPU. To enhance the reliability of our reported values,614

we computed the mean across the three runs, providing a more stable and indicative measure of the615

model’s performance rather than relying on individual figures from a single run. This approach ensures616

that our reported results reflect the averaged behavior of the model under different seed initializations,617

acknowledging and addressing the inherent stochasticity introduced by GPU computations.618

D.1 Parameters for GNINA and SMINA619

We opted to use the default/suggested parameters as much as possible when running GNINA and620

SMINA. We set the exhaustiveness (number of Monte Carlo chains for searching) to 8. When621

applying the flexible features we chose the flexible radius to be 3.5Å as in our model, where GNINA622

also specifies the flexible sidechains as we do during training with a rectengular prism. We generated623

10 modes for each run on which we were able to evaluate top-N metrics and provide a fair assessment624

accounting for the variance of the results of the algorithm.625

For site-specific docking, GNINA has two distinct approaches. The first method involves establishing626

a rectangular prism around the ground truth atom, utilizing the minimum and maximum values for627

the x, y, and z coordinates. This prism can be further customized with the addition of a buffer (and in628

case the box defined by the prism is too small, it is appended in such a way that the ligand can rotate629

inside of it). Alternatively, the second method permits the construction of a Cartesian box by directly630

specifying the coordinates. In our comparative analysis with our results, we opted for the Cartesian631

box approach, as it aligns more closely with our definition of the ligand-binding pocket. This choice632

was also motivated by the perception that the prism method, relying on knowledge of the original633

ligand position, may introduce strong bias. However, even when using the autobox method to level634

the playing field, our results demonstrate that the performance of our model remains competitive. In635

this case, we compared the different approaches using the rigid model on crystal structures of the636

testset of PDBBind depicted in Table 6.637

Even with no additional buffer when autoboxing the ligand, we can see that the results of GNINA638

are below 50% on the pre-processed files. We can also see that even doubling the exhaustiveness639

does not significantly affect the docking results. This plateau effect may indicate that the algorithm640

has adequately explored the conformational space, and additional computational resources do not641

lead to a proportional enhancement in the quality of predictions. When looking at the results of642

the preprocessed and original protein files, we can also observe that minor changes in the protein643

structure inputs result in significant differences in docking performance, suggesting a concerning644

sensitivity to variations in molecular configurations. This sensitivity is undesirable, especially when645

handling generated protein structures is a goal.646

Clearly, the case of only autoboxing the ligand with no additional buffer does not reflect reality as the647

user would have to know the exact bounding box of the ligand with a 0Å margin of error. We can then648

observe that with an increase in the search space, the docking performance of GNINA deteriorates.649

The Cartesian pocket we selected exhibits very similar performance to the default setting, which650

incorporates a 4Å buffer through autoboxing, with only a marginal 1-2% difference. This justifies651

our comparison to the Cartesian box instead of the default GNINA settings while also being fair in652

having a similar pocket definition.653
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Table 6: GNINA results with different attributes. In this table, we present additional results
for benchmarking GNINA: the differences in results with differently defined or sized pockets,
exhaustiveness and input protein files.

preprocessed PDB files on original PDB files
Top-1 RMSD Top-5 RMSD Top-1 RMSD Top-5 RMSD

Pocket Type Exhaustiveness <2% Median <2% Median <2% Median <2% Median

Our pocket center + 10Å 8 42.7 2.5 55.3 1.8 48.2 2.2 63.0 1.5
Autobox Ligand + 0Å 8 48.0 2.2 63.9 1.5 53.0 1.9 69.8 1.3

16 45.7 2.2 85.6 1.5 - - - -
Autobox Ligand + 4Å 8 43.6 2.3 58.1 1.7 51.0 1.9 67.2 1.3

16 46.4 2.2 60.4 1.6 - - - -
Autobox Ligand + 10Å 8 39.6 3.0 49.9 2.0 47.0 2.3 61.5 1.5

16 42.2 2.7 54.7 1.8 - - - -

E Performance on ColabFold654

ColabFold [Mirdita et al., 2022] is a faster version of AlphaFold2 [Jumper et al., 2021] and is often655

used to generate a 3D structure based on a given sequence. In this part, we show how the model656

behaves on these structures instead of using ESMFold2 structures. This study is crucial since the657

model uses ESMFold embeddings during training for all proteins, and some of the training set also658

consists of high-quality structures predicted by ESMFold. This could mean that the model only works659

well with those specific structures while producing inferior results otherwise. To answer this, we have660

presented similar studies for ColabFold structures in Table 7, Table 8, and Table 9. We can see that661

the results are similar to those from ESMFold, letting us conclude that the model generalizes to well.662

Table 7: PDBBind docking performance with ColabFold structures. Comparing the top-1 and
top-5 results of multiple docking approaches when using structures generated by ColabFold.

Apo ColabFold Proteins
Top-1 RMSD Top-5 RMSD

Method %<2 Med. %<2 Med.

SMINA (rigid) 5.7 7.5 13.1 5.5
SMINA 5.3 7.0 11.5 5.4
GNINA (rigid) 10.5 7.3 18.0 5.0
GNINA 7.7 6.8 15.6 4.9

DIFFDOCK-POCKET (10) 37.5 2.8 45.0 2.3
DIFFDOCK-POCKET (40) 39.5 2.7 46.0 2.2

Table 8: Top-1 PDBBind docking with ColabFold structures. More detailed performance evalua-
tion when docking to in-silico structures generated by ColabFold.

Ligand RMSD Sidechain RMSD

Percentiles ↓ % below
threshold ↑ Percentiles ↓ % below

threshold ↑
Methods 25th 50th 75th 2 Å 5 Å 25th 50th 75th 1 Å 2 Å

SMINA (rigid) 5.1 7.5 11.4 5.7 23.9 - - - - -
SMINA 5.0 7.0 9.7 5.3 25.6 1.9 2.3 3.2 0.6 32.1
GNINA (rigid) 3.7 7.3 11.6 10.5 34.8 - - - - -
GNINA 4.1 6.8 10.3 7.7 33.5 1.9 2.3 3.1 0.3 32.9

DIFFDOCK-POCKET (10) 1.5 2.8 5.0 37.5 75.2 1.0 1.4 1.9 28.2 79.0
DIFFDOCK-POCKET (40) 1.5 2.7 5.0 39.5 74.6 1.0 1.4 1.9 27.6 79.0
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Table 9: PDBBind sidechain performance with ColabFold structures. Evaluating the performance
of the sidechains when relying on in-silico structures generated by ColabFold.

Apo ColabFold Proteins
Top-1 SC-RMSD Top-5 SC-RMSD

Method %<1 Med. %<1 Med.

SMINA 0.6 2.3 0.6 2.0
GNINA 0.3 2.3 1.2 1.9

DIFFDOCK-POCKET (10) 28.2 1.4 35.1 1.2
DIFFDOCK-POCKET (40) 27.6 1.4 34.9 1.2

F Additional Results663

F.1 Further Docking Results664

We have compiled a list of tables and figures that allow further evaluation of the docking results. In665

Table 10 and Table 11, we illustrate the different percentiles of our predictions for the ligand and666

sidechain predictions for both crystal structures and ESMFold. We also evaluate the models on a667

subset of the testset where UnitProt IDs that are present in the training or validation set have been668

removed. The results are shown in Table 12. Figure 5 shows the cumulative distribution functions of669

the top-1 docking RMSD.670

Similarly as for the ligand docking accuracy, we also provide further studies for the sidechain accuracy.671

Figure 6 illustrates the fraction of predictions with a lower sidechain RMSD for crystal structures672

and ESMFold structures respectively. Since the sidechains of ESMFold structures cannot be aligned673

completely to the crystal structures by only changing the torsional angles, Figure 7 shows further674

studies on the relative SC-RMSD. The relative SC-RMSD is computed by subtracting the SC-RMSD675

of the ESMFold structure from the SC-RMSD of the predicted protein.676

Table 10: Top-1 PDBBind crystal docking. A more detailed performance evaluation of docking
with holo crystal structures.

Ligand RMSD Sidechain RMSD

Percentiles ↓ % below
Threshold ↑ Percentiles ↓ % below

Threshold ↑
Methods 25th 50th 75th 2 Å 5 Å 25th 50th 75th 1 Å 2 Å

SMINA (rigid) 1.6 4.5 8.0 32.5 54.7 - - - - -
SMINA 2.8 5.4 7.8 19.8 47.9 1.6 1.8 2.2 2.0 63.8
GNINA (rigid) 1.2 2.5 6.8 42.7 67.0 - - - - -
GNINA 1.8 4.6 7.9 27.8 54.4 1.4 1.7 2.1 3.3 71.9

DIFFDOCK-POCKET (10) 1.1 2.1 4.5 47.7 78.7 0.6 1.0 1.6 49.2 85.7
DIFFDOCK-POCKET (40) 1.1 2.0 4.3 49.8 79.8 0.6 1.0 1.5 48.7 87.0

Table 11: Top-1 PDBBind ESMFold docking. A more detailed performance evaluation of docking
with computationally generated ESMFold structures.

Ligand RMSD Sidechain RMSD

Percentiles ↓ % below
threshold ↑ Percentiles ↓ % below

threshold ↑
Methods 25th 50th 75th 2 Å 5 Å 25th 50th 75th 1 Å 2 Å

SMINA (rigid) 5.4 7.7 11.9 6.6 22.5 - - - - -
SMINA 5.5 7.3 9.9 3.6 20.5 1.9 2.4 3.7 0.6 34.4
GNINA (rigid) 4.1 7.5 12.0 9.7 33.6 - - - - -
GNINA 4.7 7.2 10.5 6.6 28.0 1.9 2.5 3.7 0.6 31.0

DIFFDOCK-POCKET (10) 1.3 2.6 5.1 41.0 74.6 0.9 1.2 1.8 33.3 79.6
DIFFDOCK-POCKET (40) 1.2 2.6 5.0 41.7 74.9 0.9 1.2 1.8 32.6 80.3
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Table 12: Filtered PDBBind docking performance. This table mirrors the resutls from Table 1,
but has filtered out all the complexes of the testset where the UniProt ID appears in the training or
validation set.

Apo ESMFold Proteins Holo Crystal Proteins
Top-1 RMSD Top-5 RMSD Top-1 RMSD Top-5 RMSD Average

Method %<2 Med. %<2 Med. %<2 Med. %<2 Med. Runtime (s)

DIFFDOCK (blind, rigid)* - - - - 20.8 6.2 28.7 3.9 40
SMINA (rigid) 6.5 7.7 15.9 6.2 29.0 5.1 45.7 2.2 258
SMINA 4.8 7.6 12.7 5.3 18.3 6.2 38.7 3.0 1914
GNINA (rigid) 10.1 7.2 20.3 5.3 39.9 2.6 54.5 1.9 260
GNINA 8.7 6.6 15.9 4.9 24.8 4.5 38.7 2.9 1575

DIFFDOCK-POCKET (10) 27.7 3.3 34.6 2.8 36.5 2.5 49.4 2.0 17
DIFFDOCK-POCKET (40) 26.3 3.3 33.6 2.7 39.2 2.4 52.4 1.9 61
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Figure 5: Cumulative distribution function of RMSD. Left: The CDF when using crystal structures
as input. Right: The CDF when using ESMFold structures as input.
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Figure 6: Cumulative distribution function of SC-RMSD. Left: The CDF when using crystal
structures as input. Right: The CDF when using ESMFold structures as input.
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Figure 7: Relative sidechain improvements on ESMFold structures. Left: The relative sidechain
improvement, when picking the top-5 sidechain prediction. Right: The relative sidechain improvement
only for ESMFold complexes that have a pocket RMSD of < 1.5Å.
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F.2 Confidence Model Evaluation677

To determine the effectiveness of the confidence model, we have compared how the impact of the678

number of generated samples on the quality. When having a strong confidence model, the performance679

with more samples will be monotonically increasing. This analysis is illustrated in Figure 8 for680

RMSD, SC-RMSD, and for crystal and ESMFold structures respectively. However, if the model only681

produced very similar poses, then the number of generative samples would not be indicative of the682

quality of the confidence model. To further investigate the performance of the confidence model, we683

compare the selective accuracy. For this, we rank the confidence of all top-1 predictions and discard684

the lowest-ranking ones (according to the confidence model). How this selection compares to an685

oracle with perfect selection gives insight into the quality of the confidence model. This is shown in686

Figure 9, where we see that the confidence model works especially well for the RMSD, and is less687

accurate for the SC-RSMD. In all cases, a higher confidence correlates with a better pose.688
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Figure 8: Performance based on number of generative samples. Compare the top-1, top-5, and
top-10 accuracy based on the number of samples generated by our procedure. In left, the RMSD of
the ligand can be seen, whereas right, the sidechain RMSD is illustrated. In the top row, the input are
crystal structures, while the bottom row uses structures generated by ESMFold.
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Figure 9: Selective accuracy of the score-model. Compare the performance of the model with
respect to the confidence model, and a perfect selection. In left, the RMSD of the ligand can be seen,
whereas right, the sidechain RMSD is illustrated. In the top row, the input are crystal structures,
while the bottom row uses structures generated by ESMFold.
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F.3 Performance Based on Quality of Computational Structures689

While we saw that the docking results between ESMFold and ColabFold structures did not change690

much, we will investigate whether the quality of the computationally generated structures impacts the691

performance. Figure 10 shows the overall quality of the predictions by illustrating the RMSD to the692

ground truth protein structure in the pocket. We see that more than half of the predictions have an693

RMSD of < 2Å to the ground truth structure. Figure 11 shows the percentage of complexes with694

a good RMSD and SC-RMSD respectively. For this, we have split the test set into roughly three695

equally sized parts based on the RMSD of all atoms in the pocket between ESMFold structures and696

the ground truth crystal structures. We can clearly see that the performance degrades with worse697

predictions. For very bad predictions, our method is not notably better than others.698
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Figure 10: Pocket RMSD between apo and holo structures. Apo ESMFold and ColabFold
structures have been aligned with the holo crystal structures such that the RMSD in the pocket is
the lowest. This figure shows the RMSD of the pocket for proteins in the test set. The dashed lines
represent the 25%, 50%, and 75% percentiles respectively. This figure does not show outliers having
an RMSD larger than 10Å.
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Figure 11: Model accuracy based on quality of ESMFold predictions. Comparison of the model
accuracy with three different levels of the quality of ESMFold predictions. The predicted ligand (left)
and sidechain quality (right) are evaluated respectively.

F.4 Number of Reverse Diffusion Steps699

We evaluated multiple values for the concrete number of reverse diffusion steps on the validation set700

to determine the best number at inference time. The results are visualized in Figure 12. 30 reverse701

diffusion steps yielded the best results while not impacting the performance too much. We can see702

that we could reduce the number of reverse diffusion steps to 20 without losing too much performance.703

This reduction in reverse diffusion steps could reduce the runtime by up to 33%.704
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Figure 12: Comparison of the number of reverse diffusion steps. Results of the inference with
different reverse diffusion steps on the validation set. The values on the y-axis shows the fraction of
samples where the RMSD is < 2Å and the SC-RMSD is < 1Å.

F.5 Impact of Pockets for Cross-Docking705

When comparing works that use site-specific docking, it is important to compare which pockets they706

used and if the definitions are similar enough not to skew the results. More accurate pockets typically707

result in better predictions. In Table 13, we see how different pockets influence the results of the708

performance of our model in the cross-docking benchmark. For this testset, we present the numbers709

for three different choices of pockets.710

1. Use the pocket center definition as we did in training which is defined as the mean α-carbon711

atoms that are within 5Å of any ligand atom. This requires the ground truth ligand and712

would thus be an unfair comparison. Marked with a *.713

2. Use the pocket center definition as Brocidiacono et al. [2023] where they rely on information714

from multiple ligands [Brocidiacono et al., 2022]. This can be very different from our715

definitions. Marked with a †.716

3. Pre-process the pockets from Brocidiacono et al. [2023] by computing the mean of the717

α-carbon atoms in the pocket. This does not use any additional data and follows a more718

similar definition to our pocket. These numbers were presented in the main paper.719

If the pockets were constructed the same way as in training (i.e., no distribution shift but different data720

than competitors), we would achieve results improving on the state-of-the-art in all < 2Å accuracy721

metrics. Even giving better predictions than GNINA. When using the exact pockets specified by722

Brocidiacono et al. [2023], the results are slightly worse than those presented in the paper’s main text723

but still show the same trend.724

Table 13: Cross-docking performance on CrossDocked 2020 with different pockets. In this table,
we present additional results for the cross-docking benchmarks when using different pockets. The
method highlighted with * follows our pocket definition presented with access to the ground truth
data to compute the pockets as in training. For the results marked with a †, we use identical pocket
centers as presented in Brocidiacono et al. [2023].

Top-1 RMSD Average
Method %<2 %<5 Runtime (s)

DIFFDOCK-POCKET* (10) 32.7 (31.8) 68.2 (71.5) 20.6
DIFFDOCK-POCKET† (10) 26.8 (17.0) 67.2 (50.5) 21.4
DIFFDOCK-POCKET† (40) 28.3 (18.2) 68.2 (49.6) 71.6
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