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Abstract

While modern biotechnologies allow synthesizing new proteins and function mea-
surements at scale, efficiently exploring a protein sequence space and engineering it
remains a daunting task due to the vast sequence space of any given protein. Protein
engineering is typically conducted through an iterative process of adding mutations
to the wild-type or lead sequences, recombination of mutations, and running new
rounds of screening. To enhance the efficiency of such a process, we propose a tree
search-based bandit learning method, which expands a tree starting from the initial
sequence with the guidance of a bandit machine learning model. Under simplified
assumptions and a Gaussian Process prior, we provide theoretical analysis and a
Bayesian regret bound, demonstrating that the combination of local search and
bandit learning method can efficiently discover a near-optimal design. The full
algorithm is compatible with a suite of randomized tree search heuristics, machine
learning models, pre-trained embeddings, and bandit techniques. We test various in-
stances of the algorithm across benchmark protein datasets using simulated screens.
Experiment results demonstrate that the algorithm is both sample-efficient and able
to find top designs using reasonably small mutation counts 1.

1 Introduction

Advances in biotechnology have demonstrated human’s unprecedented capabilities to engineer
proteins. They make it possible to directly design the amino acid sequences that encode proteins for
desired functions, towards improving biochemical or enzymatic properties such as stability, binding
affinity, or catalytic activity. Directed evolution (DE), for example, is a method for exploring new
protein designs with properties of interest and maximal utility, by mimicking the natural evolution
process. The development of DE was honored in 2018 with the awarding of the Nobel Prize in
Chemistry to Frances Arnold for the directed evolution of enzymes, and George Smith and Gregory
Winter for the development of phage display [3, 39, 46]. Traditional DE strategies are inherently
screening (greedy search) strategies with limited ability to generate high-quality data for probing the

1Our code is available at https://anonymous.4open.science/r/TreeSearchDE-public-0D26/
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full sequence-function relationships. Recent advances in synthetic DNA generation and recombinant
protein production make the measurement of protein sequence-function relationships reasonably
scalable and high-throughput [28, 49].

Due to the bottleneck of wet-lab experimentation and the complex landscape of protein functions,
identifying novel protein designs for maximal fitness remains one of the most difficult but high-
value problems in modern medicine and biology. This has motivated scientists to apply machine
learning approaches, beginning with Fox et al. [16] and followed by many, with increasing amounts
of efforts utilizing in silico exploration and machine learning beyond experimental approaches
[49, 15, 12, 36, 18, 44, 38]. More recent advances in large language models open up new opportunities
for modeling and predicting protein functions and generalizing knowledge across protein domains
[32, 37, 27, 21, 13].

The key research challenge with designing the iterative protein screening strategy is exploration, i.e.,
how to effectively explore in a large combinatorial space and learn the sequence-to-function landscape
towards finding the optimal. While many attempts have been proved successful in simulation and
sometimes in real experiments [8, 36], they often are limited by practical constraints and their
performance is very sensitive to domain/distribution shifts. Even with the best and largest pre-trained
protein language models such as ESM-1b [31] and ProGen2 [27], one often needs to explore an almost
unknown domain and learn a new function map in order to discover new drugs. This is especially
true with antibody engineering. Antibodies have highly diverse complementarity-determining region
(CDR) sequences that can be altered, resulting in a huge sequence space to explore for optimal
properties. The binding of antibodies to their targets are extrinsic properties of antibodies and it is
difficult to accurately model the sequence-binding relationships solely from the sequences alone.
Further, most of the exploration strategies used in practice lack theoretical guarantees.

Practical considerations in protein screens and a tree search view Protein engineering is
typically done through trial-and-error approaches in altering the primary sequence by mutations
or changing the length of certain regions. More high-throughput approaches (e.g. in vitro display
systems) involve randomizing the amino acids for the positions-of-interest or region-of-interest. To
obtain the optimal properties for a protein, the directed evolution approach is typically used by
exploring a limited sequence space in each round of engineering, and starting the next round of
engineering from the best one or the best few sequences in the previous round, in an iterative manner
[47]. A typical protein engineering workflow by producing purified proteins is limited to up to a
few hundred sequences due to the throughput limitations. In vitro display systems, on the other
hand, can be used to screen millions of sequences, although the data generation (labeled data of
sequence-function relationships) throughput is much smaller.

For practical reasons, especially for therapeutic proteins, the choice of mutations is dependent on
the knowhows of the protein engineer, and the number of mutations is kept low in order to prevent
unexpected issues associated with decreased protein stability, compromised binding specificity, and
immunogenicity. Adding too many mutations may also lead to distribution-shift and reduce the
robustness of machine-learning models. Thus, practitioners are reluctant to make large jumps in
the screening/search process.

For example, [8] studied the engineering of Adeno-associated virus 2 capsid protein (AAV) and
screened a total of 201,426 variants of the AAV2 wild-type (WT) sequence. It screened all single
mutations in the first round, then generated variants with > 1 mutations via randomization and
selection of high-value ones in later rounds. Such an iterative process mimics a tree search. To
understand this process, we visualize those sequences from the dataset of [8] after downsampling in
Figure 1. We see that the screen data map nicely to a tree, where the root node corresponds to the
wide-type AAV and mutations connect parent and child nodes. These observations are consistent
with practical screening strategies that add mutation sequentially and search for better alternatives.
Note that the tree size grows exponentially as mutations are added. For the example of AAV, variants
with up to 5 mutations form a tree with

∑5
i=0

(
28
i

)
· 19i nodes. Thus even with a bounded number of

mutations, the problem is prohibitively difficult.

Our Approach In order to make the screening process more efficient, we borrow ideas from both
the protein engineering practices and recent advances in bandit machine learning, hoping to get the
best from both worlds. We follow two principles for algorithm design:
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Figure 1: A Tree visualization of AAV screen dataset [8], generated by starting from the wild-type and building
the tree via downsampling children with an editing distance of 1 from the parent. The wet-lab screen initiates
with a wild-type design sequence (root node), and in each round new sequences are generated by adding
randomization and keeping those with high fitness scores as parents. It was believed that nodes with high fitness
are more likely to generate high-fitness children.

(1) We wish to largely follow a tree search process and identify optimal sequences with just
a few mutations. As mentioned, practitioners are reluctant to make large jumps in the
screening/search process. Being a local search strategy, tree search from lead sequences
will keep total mutation counts small, which means better reliability of the found solution.
Further, machine learning models for function prediction are more likely to generalize well
to new designs that do not change too much from training data.

(2) We employ bandit exploration techniques to guide the tree branching process. Instead of
searching greedily using a learned prediction model, we hope to more aggressively search
designs with higher uncertainty. Two main techniques in bandit learning are upper confidence
bound (UCB) and posterior sampling (also known as Thompson Sampling, aka TS). We will
incorporate these bandit techniques, leveraging pre-trained protein sequence embedding and
neural networks, into tree search to enhance exploration.

In this paper, we propose to combine tree search with bandit machine learning. We begin by presenting
a meta-algorithm (Algorithm 1). It proceeds by mimicking the directed evolution process, growing a
tree from the root node, and gradually expanding via mutation and recombination. It uses a pre-trained
embedding and a machine learning model for predicting fitness, and during the search process, it
adopts a bandit strategy to update the predictor and actively explore the tree. This meta-algorithm
provides a versatile framework for analyzing exploration in sequence space.

Results For theoretical analysis, we study a Bayesian setting where the true function map has a
Gaussian Process prior distribution. We also assume Lipschitz continuity of the embedding map
and local convexity of the fitness function. Under these simplified conditions, we show that the
meta-algorithm with GP bandit can provably identify the optimal sequence and achieves a regret
O
(
γT
√
T
)

, where γT is known as the maximal information gain. The theoretical analysis may apply
to a broader class of bandit algorithms and be of independent interest.

Next, we fully develop the algorithm for numerical implementation, and make it compatible with a
suite of bandit models including UCB and Thompson Sampling. We experiment with instances of the
algorithm and compare with a variety of baselines, using simulation oracles trained from real-life
protein function datasets AAV [8], TEM [19] and AAYL49 antibody [14] datasets. Experiment results
show that tree-based methods achieve top performances across benchmarks and can efficiently find
near-optimal designs with single-digit mutation counts.

2 Related Work

Protein engineering. The traditional DE works by artificially evolving a population of variants, via
mutation and recombination, while constantly selecting high-potential variants [9, 10, 23, 20, 43, 28].
Many variations of DE methods allow targeted randomization of positions-of-interest or regions-of-
interest. It is also possible to synthesize specific variants and operate on the combinatorial space
likewise with high-throughput method, at a cost, and this allows directly applying a Gaussian
process bandit algorithm [33]. See [49] for a high-level survey of machine learning-assisted protein
engineering, and see [17, 5] for more examples.
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Figure 2: Visualization of tree search process of Algorithm 1 using the AAV oracle. The search initiates with a
wild-type sequence (the root note) and in each round, we choose 100 sequences generated from the last round
according to scores derived from UCB and TS by single mutation which leads to a node in the next layer and
recombination of sequences (shown by blue edges) which leads to a jump to a layer with more mutations. A path
to the optimal sequence is shown by the bold line.

Search algorithms for protein sequence design. Researchers have tried out various machine
learning-based methods for sequence optimization. Bayesian Optimization(BO)[26] is a classical
method for optimizing protein sequences. We use the code developed by Sinai et al. [38] who uses an
ensemble of models for BO as one of the baselines. LaMBO[41] is also a BO-based algorithm that
supports both single-objective and multi-objective. Design by adaptive sampling (DbAS; Brookes
and Listgarten [7]) and conditioning by adaptive sampling (CbAS; Brookes et al. [6]) use a prob-
abilistic framework. DyNA PPO[2] uses proximal policy optimization for sequence design. PEX
MufacNet[30] is a local search method based on the principle of proximal optimization. We discussed
more about the search algorithms in Appendix A.

Bandit learning. Bandit is a well-studied framework for optimizing with uncertainty, powerful
in balancing exploration-exploitation trade-off – a core challenge in protein sequence optimization.
Therefore, it is potential to study protein optimization from a bandit perspective and there is recent
work [50] emerging from this middle ground. To balance exploration and exploitation, typical
strategies are being optimistic in the face of uncertainty (OFU) based on the upper confidence bound
(UCB) [1] and Thompson Sampling (TS) [34], which randomizes policies based on the posterior of
the optimal policy. Regret guarantees have been established for different function classes of rewards,
starting from the line of linear bandits. It was shown for the d-dim linear model upper and lower regret
bounds meet at Õ

(
d
√
T
)

[4, 25, 1, 25, 34]. Later on, results from linear bandits have been extended
to kernelized/ Gaussian process (GP) bandits. With γT defined as the maximal information gain and d
being the dim of actions, [40] showed an upper bound of Õ

(√
dTγT

)
and one of Õ

(
γT
√
T
)

in the

agnostic setting achieved by GP-UCB. Exploded by a factor of
√
d, Õ

(
γT
√
dT
)

regret was shown
by [11] for agnostic GP-TS.

Recently, there has been a growing interest in bridging the predictive power of deep neural networks
with the exploration mechanism of bandit learning, which is known as neural bandits [52, 51, 22, 48].
Building upon the neural tangent kernel (NTK) technique to analyze deep neural network [22],
NeuralUCB [52] can be viewed as a direct extension of kernel bandits [40]. Zhang et al. [51]
proposed the Thompson Sampling version of neural bandits. Xu et al. [48] proposed NeuralLinUCB,
which learns a deep representation to transform the raw feature vectors and performs UCB-type
exploration in the last linear layer of the neural network.

3 Method

3.1 Problem Formulation

Let x ∈ X denote an amino-acid sequence, and let F (x) denote a function measuring the fitness
of the sequence. In practice, a known embedding map ϕ : X → Rd, mapping a sequence x to its
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Algorithm 1 Meta algorithm

1: Input: wildtype xwt, total rounds T
2: Initialization: Add xwt to active node set A0 as root node.
3: for t = 1, 2, ...T do
4: Update bandit model: return a scoring function Ft(·) := ft(ϕ(·)).
5: Tree search by Algorithm 2: At ← TREESEARCH(At−1, Ft).
6: Query the fitness F (x) for all x ∈ At and append {(ϕ(x), F̃ (x))}x∈At to the dataset.
7: end for

embedding vector ϕ(x), is often utilized to model the fitness F (x) as f⋆(ϕ(x)). Thus, we formulate
the sequence design problem as

max
x∈X

F (x) := f⋆(ϕ(x)), (1)

where f⋆ represents the unknown ground-truth function. Here X corresponds to the tree rooted at the
xwt ∈ X of a fixed depth.

The learning problem is to explore X , conduct screens and collect data points of the form
(ϕ(x), F̃ (x)), refine estimates of f⋆ in an iterative fashion. Here F̃ (x) represents a noisy mea-
surement of the unknown true fitness F (x).

The hardness of the problem is due to searching over the combinatorial space X . Although we use an
embedding map ϕ(x) to help learn F more accurately, we still have to work with discrete sequences
and cannot make jumps in the embedding space. This nature of discrete sequence optimization is in
sharp contrast to typical bandit settings.

3.2 Meta-algorithm

We present a meta-algorithm that combines bandit machine learning with local tree search; see
Algorithm 1. Implementation details in Alg. 1 are delayed till Section 4.1 and Section 5.

Analysis of simple tree search For simplicity, let TREESEARCH1 be the simplest tree search
scheme that expands each active node in the tree by one level per iteration. Consider the max-fitness
sequence in the active set:

xt = argmax{Ft(x)|x ∈ At}, At ← TREESEARCH1(At−1, Ft) (2)

where Ft(·) = ft(ϕ(·)), ft is sampled from Gaussian Process with monitoring (see Section 3.3 and
(13) in Appendix H.0.2 for details).

Figure 3: Diagram of the meta algorithm (Alg. 1)

For subsequent theory, we need a condition that
the local search method makes sufficient im-
provement per iteration. In practice, this condi-
tion can be satisfied by tuning parameters and
stopping conditions of the tree search heuristic.
Condition 3.1. There exists r > 0 such that
each iteration of tree search is able to find a
solution better than the maximum in the local
region of radius r, i.e., for ∀t
Ft(xt) ≥ max{Ft(x) | ∥ϕ(x)−ϕ(xt−1)∥ ≤ r}.

In practice, it is believed that a good sequence embedding map ϕ shall capture the latent structure of the
sequence. Thus, similar sequences often share similar embedding vectors, so {x : ∥ϕ(x)−ϕ(xt−1)∥ ≤
r} characterizes a local search region around xt−1. In other words, properties of the embedding map
ϕ critically connect locally searching in the discrete sequences to searching in the embedding space
towards improving function value.

3.3 Regret Theory under GP Fitness

In this section, we consider a simplified mathematical setting to gain a basic theoretical understanding
of the tree search-based bandit learning process. By using a Bayesian regret analysis, we provide a
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theoretical abstraction of complicated real-world practice, and the results may have implications in a
broader class of methods. We put some assumptions and definitions in Appendix G.

Theorem 3.2. Under Assumption G.1, G.2, G.4 and Condition 3.1, Alg.1 updates ft for O (γT ) times
and the series of max-fitness sequences {xt}Tt=1 (defined by (2)) attains

BayesRGT(T ) = O

(
βT
√
λTγT +BγT

(
1 +

4L2N2

r2

))
, (3)

where βT = E [∥f⋆∥k] + 2
√
2 lnT + 1 + γT−1 +

√
2 lnT when the noise level λ = 1 + 1

T and the
expectation is taken over the prior GP. r is inherit from Condition 3.1 and N is the depth of tree
search.

Novelty and significance compared to classical results of bandits/Bayesian optimization. One
may ask how Theorem 3.7 and its analysis compare to results from the classical bandits/Bayesian
literature. We highlight that classical results do not apply our tree search algorithm that uses local
search to gradually explore the action space. In particular, classical methods (such as plain vanilla
UCB or TS) require finding the global maximum of a surrogate function in each iteration. This is
far from the protein design practice where one wants to stay not too far from the wild type: looking
for global max of f̂t suffers from substantial computation overhead and can lead to instability and
invalid solution.

In contrast, our method adds mutations gradually in a tree search process mimicking real-world
screen practice. Analysis of such methods is much more complicated: We adapt classic arguments
in optimization theory to analyze the progression of local search, which is further entangled with
bandit exploration and information gain when new samples are collected. The proof idea is to view
each local update as a form of proximal point optimization update and derive a novel recursive
decomposition of the overall regret. Please see Appendix F for full proof details. Our analysis may be
of interest to analyzing a broader class of bandit-guided evolutionary optimization algorithms.

Despite these differences, our regret bound nearly matches regret bound of classical bandit methods.
The message is quite positive: The use of iterative local search does not impair quality of learning,
with provable guarantee to explore the space of interests.

Figure 4: A demonstration of mutation and recombina-
tion.

Universality of GP assumption GP provides
a universal function approximation and it comes
with both practical and theoretical implications.
GP model and Bayesian optimization have been
directly applied in protein engineering practice
and proved effective in wet-lab experiments [33],
which support our assumptions here. Further, GP
can represent any kernel function space, which
together with the modern deep learning theory
[22] imply a powerful theoretical approximation
to neural networks used in practice.

Synergy between Tree search and Bandit
Our analysis demonstrates how to create syn-
ergy between tree search and bandit machine learning. If we just use pure tree search without any
bandit learning, tree search has a complexity that grows exponentially with depth. With the use of
bandit learning, the sample complexity reduces to quadratic with tree depth.

4 Full Algorithm

4.1 Tree Search Heuristics

In this section, we present the full algorithm.
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Algorithm 2 TREESEARCH(A, F (·))
1: Input: Active node set A, scoring function F (·)
2: Parameter: n1, n2, n3, ρ
3: Initialization: Candidate node set C = ∅, Query node set Q = ∅
4: for i = 1, 2, · · · , n1 do
5: Add random mutation to a random sequence x ∈ A.
6: Add the new sequence to candidate node set C.
7: end for
8: for i = 1, 2, · · · , n2 do
9: Sample x, y from A uniformly with replacement.

10: Recombine x, y and add the new sequence to C.
11: end for
12: Set new active node set A with n3 sequence where ρ portion is from A and 1− ρ portion is from

the top scored sequences in {F (x) : x ∈ C}.
13: return A

Algorithm 2 expands a tree starting from the root wide-type sequence, i.e., A = {xwt}. Similar to
the practice of directed evolution, we generate child nodes from parents in two ways: adding random
mutation to one sequence and pairwise recombining two sequences. See Figure 4 for an illustration
of these two operations. We use hyperparameters n1, n2 to control the rate of mutation and rate of
recombination.

We use an active set A to keep track of the frontier of the tree search. At each round, the tree expands
in a randomized way. New nodes with high scores measured by F will be kept track of and later used
for updating the active set A.

Ideally, one would want to keep the full search history in A, but then the runtime will quickly blow
up due to the exponential tree size. To make it more computationally affordable, we do not expand
the active setAt, but keep it at a constant size in our implementation. We use a parameter ρ to control
the portion of previously visited nodes to keep in the active set. This parameter can also be viewed as
balancing depth and width in tree search.

4.2 Bandit Exploration

We use two classic exploration methods for scoring, Upper Confidence Bound (UCB) [25] and
Thompson Sampling (TS; Russo and Van Roy [34]), to enable our algorithm to consider the potential
of each node and look ahead. Details are referred to Appendix B.1.

5 Experiment

In this section, we evaluate our algorithm using oracles simulated to mimic the exploration process
in wet-lab protein screens. Following Ren et al. [30] and Sinai et al. [38], we use oracles to mimic
the fitness landscape as the wet-lab experiment is both time-consuming and cost-intensive. We build
experiments around real-world protein datasets, such as AAV [8], TEM [19] and AAYL49 antibody
[14]. Experiments results show that the tree search-based bandit outperforms existing baselines and
leads to several interesting observations.

5.1 Datasets and Setup

5.1.1 Datasets

We experiment using three datasets from protein engineering studies and train oracles to simulate the
ground-truth wet-lab fitness scores f⋆ of the landscape. The AAV and TEM oracles use pre-trained
TAPE embedding [29] with a CNN model and the AAYL49 oracle is a downstream task from the
pre-trained TAPE transformer model [29], more details about oracle could be found in B. For each
round of the experiment, the model will query sequences from the black-box oracle, and the oracle
will produce a fitness score depending on the sequence similar to the wet lab.
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Figure 5: Learning curves of algorithms with comparison to baselines, tested over three datasets.

In particular, we use datasets of Adeno-associated virus 2 capsid protein (AAV) [8] which aimed for
viral viability with search space 2028; TEM-1 β-Lactamase (TEM) [19] which aimed for thermody-
namic stability with search space 20286; and, Anti-SARS-CoV-2 antibody (AAYL49) [14] which
aimed for binding affinity with search space of 20118. A full description can be found in B.2

5.1.2 Experiment Setup

In the experiment, we run each algorithm for 10 rounds with 100 query sequences per round for a fair
comparison with our baselines. The algorithm cannot get any information about the oracle except the
channel of queried sequences. Each test is run for 50 repeats using 50 different random seeds and
measured the average performance across all seeds.

We use PEX [30], Adalead [38], Bayesian Optimization (BO) implemented by Sinai et al. [38], DbAS
[7] implemented by Sinai et al. [38] and LaMBO[41] as our main baselines. We also use NeuralUCB-
DE and NeuralTS-DE as the other two baselines which can be viewed as two downgraded versions of
our algorithm without tree search. In detail, NeuralUCB-DE and NeuralTS-DE use uniform mutation
with a mutation probability and recombination to generate new sequences. We also tested CbAS
[6] but choose not report it, because it performs almost the same as DbAS, consistent with results
Ren et al. [30]. The performance of the LaMBO on the TEM dataset is missing because the LaMBO
algorithm has a memory limit and run-time efficiency issue on the TEM dataset due to the long
sequence length. We do not use DyNAPPO [2] as our baseline due to tensorflow incompatibility.

For tree search-based algorithms, we use a neural network and follow [48]’s approach and use the
second last dense layer’s output of the neural network as ϕ(x) used by the UCB/TS formula. We
reported tree search-based algorithms both uses UCB(TreeNeuralUCB) and TS(TreeNeuralTS). More
details are included in Appendix B.

We run all the exploration algorithms on the same neural network structure for fair comparison. One
hot encoding with CNN was used for the TEM and AAYL49 antibody datasets. We use TAPE [29]
embedding with a simple 2-layer fully connected neural network for the AAV dataset to compensate
for the limited sequence length.

5.2 Results and Analysis
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Figure 6: Effect of keeping parent nodes in active
set.

Performances and Comparison. The experi-
ment results are shown in Figure 5. Our tree
search-based algorithm generally outperforms
our baselines regarding the max fitness perfor-
mance. The detailed ranking for all algorithms
on each dataset can be seen in Appendix E. On
the datasets TEM and AAYL49, all algorithms’
curves seem not to reach convergence in 10
rounds. This is because TEM and AAYL49 deal
with much longer sequences, so convergence
is slower no matter what algorithm is used. We
also conducted additional tests on the landscapes
build by Thomas et al. [42] reported in B, the
results are consistent with our oracle and the tree
search method outperforms other baselines.

For the performance of mutation count, tree search-based algorithms are not worse than PEX-based
algorithms. On the AAV dataset, all algorithms can be controlled within 5 mutation counts. However,
on datasets with larger sequence lengths, both NeuralUCB-DE and NeuralTS-DE have very large
mutation counts.

We also run an experiment on the 3gfb oracles build by Thomas et al. [42] using the same setting. We
report the results in appendix B.6. The results is consistent with other oracles and the tree search-based
algorithms outperform the baselines regarding the max fitness performance.

Effect of Tree Search compared to DE In Figure 5, tree search-based algorithms generally outper-
form two baselines NeuralTS-DE and NeuralUCB-DE. Meanwhile, tree search-based algorithms
only need fewer mutation counts than those non-treesearch methods.

Figure 7: Effects of recombination of TreeNeuralBandit
tested with the AAV oracle. By varying the rate of re-
combination, we see that performance tops with a proper
choice of positive recombination rate (yellow curve).

Effect of Recombination. We also compare dif-
ferent recombination rates. The line with a zero
recombination rate means that the algorithm
only includes mutation and doesn’t consider the
recombination process. In Figure 7, we show
that adding the recombination process to gen-
erating candidate children nodes is beneficial
for improving performance, especially for small
recombination rates. However, if the recombi-
nation rate becomes further larger, performance
will gradually decrease and become even worse
than the algorithm with a zero recombination
rate.

Effect of keeping parent/root nodes in active
set. We use a parameter ρ to control updates of
the active set, i.e., saving part of the root node
set in each round. Figure 6 shows one seed’s
curve where the exploration got stuck when the active set is not updated to save enough parents/root.
By saving previous nodes, it balances width-first and depth-first better and allows the algorithm to
find higher-value nodes.

Effect of diversity promotion. We tested adding an additional diversity bonus and observe a trade-off
between group diversity and group fitness. Details are included in Appendix D.

6 Conclusion

This paper proposes a tree-based bandit learning method for enhancing the process of protein
engineering. The methods expand the tree from the initial sequence (wild-type) with the guidance of
bandit machine learning models using randomized tree search heuristics, machine learning models,
pre-trained embeddings. We have shown the algorithm can discover a near-optimal design under
simplified assumptions, with experimental validation.
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A Related Work Details

Bayesian Optimization(BO)[26] is a classical method for optimizing protein sequences. Sinai et al.
[38] implements the code of an ensemble of models for Bayesian Optimization(BO) as one of its
baselines. However, BO is computationally inefficient because it searches the entire sequence space
in each round. LaMBO[41] is also a BO-based algorithm that supports both single-objective and
multi-objective, but it is again computationally inefficient on sequences with long lengths. Design
by adaptive sampling (DbAS; Brookes and Listgarten [7]) uses a probabilistic framework as well as
an adaptive sampling method to maximize the fitness landscape. Similar to DbAS, conditioning by
adaptive sampling (CbAS; Brookes et al. [6]) shares the same probabilistic method with regularization
to solve the problem that data distribution may differ from the training distribution. DyNA PPO[2]
uses proximal policy optimization for sequence design. However, DyNA PPO may search the space
far from the wild type, which leads to a high mutation count. AdaLead[38] is an evolutionary
algorithm with greedy selection: In each round, it selects the sequences near the best sequence derived
in the last round on the fitness landscape to do recombination and mutation. Then it chooses the
best sequence set according to the approximate model to query the ground-truth landscape model.
PEX MufacNet[30] is a local search method based on the principle of proximal optimization, with
a MutFAC network tailored to mutated sequence data. It also follows a greedy strategy to select
sequences to query and does not employ bandit-based exploration.

B Experiment Details

B.1 Bandit Exploration

We apply the bandit-based exploration mechanism to select sequences for fitness evaluation. In the
UCB version, we use a parameter α to control the explore-exploit tradeoff and we calculate the

UCB score using FUCB(x) = θTt−1ψ(x) + α
√
ψT (x)A−1

t−1ψ(x), where ψ is some feature map, θt is

the model parameter and the covariance matrix is defined as Mt = λI+
∑t−1

i=1 ψ(x)ψ(x)
⊤. In the

Thompson Sampling version, Ft takes the form FTS(x) = θ̃Tψ(x), where θ̃ are parameters sampled
from a posterior distribution N

(
θt−1, αM

−1
t−1

)
.

We consider two predictive models in our tree search bandits, linear model, and neural networks. For
the linear model, we can simply take ψ to be a pre-trained embedding ϕ = ψ, and our experiment
uses the TAPE [29] embedding, and θt is the closed form solution of ridge regression. For neural
networks, we construct a neural net taking ϕ(x) as input and use the second last dense layer’s output
of the neural network as ψ(x) for calculating bonus or posterior distribution, following the shallow
exploration idea of [48].

B.2 Full Dataset Description

Adeno-associated virus 2 capsid protein (AAV) AAVs have been widely used in gene therapies.
A particular interest is changing the sequence of the capsid protein to address the issues of tissue
tropism and manufacturability. We collected dataset from Bryant et al. [8], which contains 283953
different length sequences engineered a region (positions 561-588) on the AAV2 VP1 protein for
optimizing the viral viability. We limited the search space to the sequences which have the same
length (28 amino acids) as the wildtype sequence and the search space is 2028.

TEM-1 β-Lactamase (TEM) TEM-1 β-Lactamase is an E. coli protein that efficiently hydrolyzes
penicillins and many cephalosporins, affording antibiotics resistance. It is used to understand the
mutational effects and epistatic interactions between mutations in the fitness landscape. We collected
the fitness data from [19] which contains 16924 sequences. The sequence length is 286 which results
in 20286 search space.

Anti-SARS-CoV-2 antibody (AAYL49) Recombinant antibody is a common therapeutic modality
that is widely adopted in treating many diseases, including cancers, metabolic disorders, and viral
infections. The Fv region of antibodies is the most important region for antigen binding, affording
target specificity of the binding event. Engelhart et al. [14] presented a dataset of quantitative binding
scores for mutational variants of several antibodies against a SARS-CoV2 peptide. We use the
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AAYL49 heavy chain part of the dataset which includes 26454 sequences and the sequence length is
118 which results in 20118 search space.

Table 1: Dataset Summary

DATASET AIM SIZE WT LENGTH SEARCH SPACE

AAV [8]: VIRAL VIABILITY 283953 28 2028

TEM [19]: THERMODYNAMIC STABILITY 16926 286 20286

AAYL49 [14]: BINDING AFFINITY 13922 118 20118

B.3 Data Preprocessing

We preprocess each of the datasets to keep only the sequence and fitness information. The preprocess-
ing of each dataset is as follows:

• AAV: We removed the sequence with type ”stop” as the stop codon also remove the amino
acids after the editable regions. The column ”score” was used for fitness. The dataset after
the preprocessing has 283953 sequences.

• TEM: We converted the mutated position to the full single and double mutation sequences
using the wild-type and assign the corresponding single and double mutation fitness. The
dataset after the preprocessing contains 16924 sequences

• AAYL49: We keep ”MIT Target” and the ”AAYL49” part of the dataset. We take the mean
of the non-empty fitness score across different experimental repeats. We dropped the data
with empty fitness scores for all three repeats. The preprocessed dataset contains 13922
sequences.

B.4 Oracle Training

For AAV and TEM datasets, we used the pretrained transformer model of TAPE [29] to generate a
768-dimension embedding as the input of the CNN model from [38] shown as in 2. We used a 80/20
train-test split for the preprocessed datasets with shuffle. The oracle was trained using the training set
with learning rate 1× 10−4, batch size of 256 for maximum of 3000 rounds with an Adam optimizer.
The training will be early stopped if the loss does not decrease for 100 epochs.

Table 2: CNN Architecture used by Oracle

INPUT: TAPE EMBEDDING

1D - CNN NUMBER OF FILTERS: 32, KERNAL SIZE: 5
RELU ACTIVATION

1D - CNN NUMBER OF FILTERS: 32, KERNAL SIZE: 5
RELU ACTIVATION

1D - CNN NUMBER OF FILTERS: 32, KERNAL SIZE: 5
RELU ACTIVATION

GLOBAL MAX POOLING
DENSE OUTPUT SIZE: 256

RELU ACTIVATION
DENSE OUTPUT SIZE: 256

RELU ACTIVATION
DROPOUT: p = 0.25

DENSE OUTPUT SIZE : 1

For the AAYL dataset, the method used for AAV and TEM results in a low spearman correlation
of 0.273. Hence, we trained a downstream task from the pretrained TAPE transformer model from
Rao et al. [29]. We also used the same used the same 80/20 train-test split and train the model with
parameter suggested by Rao et al. [29] with batch size of 32, learning rate 1× 10−5 with linear warm
up until loss does not decrease for 10 rounds.
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Figure 8: Experiment Result on 3gfb [42] Oracle

We tested the correlation between the oracle prediction and ground-truth fitness on the test set which
shown in 3

Table 3: Oracle Correlations

DATASET: AAV TEM AAYL49

SPEARMAN: 0.838 0.713 0.502
PEARSON: 0.876 0.681 0.584

B.5 Experiment Details

We run all the exploration algorithms on the same neural network structure for fair comparison.
Onehot encoding with CNN was used for the TEM and AAYL49 antibody datasets. We use TAPE
[29] embedding with simple 2 layer fully connected neural network for the AAV dataset to compensate
the limited sequence length.

All algorithms was run on NVIDIA A10G GPU for 50 different random seeds. With 4-5 algorithms
running in parallel, the total time is around 6 hours. The neural network is run with learning rate
of 10−4, batch size of 64 for maximum of 3000 epochs with a early stopping when loss does not
decreases for 50 rounds. The baseline algorithms was run using their recommended setting.

B.6 Additional Experiments on Other Landscape

We also run experiment on the 3gfb oracle designed by Thomas et al. [42] for all algorithm using
the same setting as 5 on the same model of onehot encoding and CNN. The maximum fitness curve
with the mutation count is shown in 8. For convience, the legend of the fitness plot was in descending
order regarding max fitness performance. We could see the performance is consistent with the results
on other oracles with TreeNeuralTS and TreeNeuralUCB outperform other exploration algorithms.
The mutation counts of TreeNeuralTS and TreeNeuralUCB are comparable to other algorithms and
are reletively low compare to the wild-type sequence length of 347. The mutation count and fitness of
BO are both zero as it fail to find any sequence with higher fitness than wild-type so the maximum
fitness sequence was the initial wild-type sequence for all rounds.

B.7 Simulation Results and Details

We are also interested in testing our algorithms on synthetic data to bridge the gap between theory
and. We use Gaussian Process to generate synthetic data and build a new oracle[45]. For consistency,
our simulation is controlled within 10 rounds. In Figure 9, we can find that tree-based algorithms can
achieve higher fitness scores in 10 rounds and are closer to the maximum fitness than those algorithms
which are not tree-based. Also, in the left panel of Figure 9, tree-based algorithms’ regret converges
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Figure 9: Regret and fitness curves of algorithms with comparison to baselines over synthetic data.

and maintains a low level while non-tree algorithms have the trend to increase in future rounds like
LinUCB-DE or have higher regret.
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B.8 Code Availability

We make our code public anonymously to help confirm the details. Our baseline methods like
BO, PEX, Adalead, CbAS and DbAS are implemented by their authors and we directly use their
code. The anonymous link to our code is https://anonymous.4open.science/r/TreeSearchDE-public-
0D26/README.md
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C Visualization of the Full Tree Search Process by Round

(a) t = 1 (b) t = 2 (c) t = 3

(d) t = 4 (e) t = 5 (f) t = 6

(g) t = 7 (h) t = 8 (i) t = 9

(j) t = 10

Figure 10: Visualization of the full tree search process by round
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(a) Average Fitness (b) Diversity Score

Figure 11: Experiment Results for Different q’s

D Diversity-Fitness Trade Off

We aim to improve the diversity of our algorithm by adding a diversity constraint. The diversity score
of the children node is defined as its distance to the center of nodes explored in the previous rounds
in the embedding space, i.e.,

Sdiversity =

√√√√ n∑
i=1

(ϕ(x)i − ϕ(xexplored)i)2, (4)

where ϕ(xexplored) is the center of explored sequences in the embedding space and n is the dimension
of the embedding space. Then the score function for determining the candidate node set is modified
as:

Stotal = Sorigin + q ∗ Sdiversity, (5)

where q is the weight for Sdiversity.

D.1 Experiment

We tested the effect of different parameters of q’s on both diversity and fitness. In particular, we run
the algorithm with q ∈ {0, 0.01, 0.03, 0.05, 0.08, 0.1, 0.3, 0.5, 0.8, 1, 2, 5, 10} each for 10 random
seeds. From 11, we observed a trade-off between fitness and diversity, i.e., a higher q will lead to a
higher diversity but at the same time a lower average fitness.

D.2 t-SNE

We plot a t-SNE plot for all q’s for one particular random seed shown in Figure 12. The t-SNE plot
verifies the tread-off we discussed in D.1. As the q increases, the queried sequences are more spread
out on the t-SNE plot which verifies the improvement in diversity. In contrast, when the q is low, the
queried sequences are concentrated on a smaller region of the t-SNE plot (local optimal) especially in
the later round (shown in red color), and have a better fitness caused by high fitness sequences in this
local optimal region.

E Ranking of Algorithms

In Figure 13, the legend ranks the algorithm in descending order regarding max fitness performance
for convenience. In Table 4, we show the detailed values for all algorithms.
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Figure 12: t-SNE Plot for Different q’s

Table 4: Average Max Fitness of Algorithms

DATASET: AAV AAYL49 TEM

TREENEURALUCB: 4.3723 -0.4976 2.394493
TREENEURALTS: 4.3056 -0.4132 2.356243
NEURALTS-DE: 3.7363 -0.4773 2.108297

NEURALUCB-DE: 3.7697 -0.4421 1.978440
PEX: 3.9286 -0.4482 2.283808

ADALEAD: 1.8835 -0.9322 2.225310
BO: 0.9299 -1.0038 1.215830

LAMBO: 3.7085 -0.5813 N/A
DBAS: 2.8481 -0.7580 1.035354

F Discussion on Limitations

Our theoretical result serves its purpose well to provide an understanding of using local mutation
to optimize protein utility. Our bound is a Bayesian regret bound. Also, it is an open question to
derive a frequentist bound for, which is of interest in practice when ground truth f is agnostic. Current
Bayesian regret does not directly apply to a frequentist one.

The functionalities of the protein sequences are complicated. So far, none of our oracles or oracles
from Adalead and PEX-Mufacnet, or the pre-trained protein language models such as ESM or TAPE
could accurately predict the whole landscape. However, we believe the significance of our experiment
is not to build an oracle that could perfectly represent the landscape but instead to demonstrate a new
exploration algorithm that could be applied to all protein landscapes. As from the experiments that
our algorithm performs well on all oracles we built as well as on the new dataset from antibodies, we
should expect our algorithm will perform well on the actual landscape.

Also, we are actively building our wet lab to apply our algorithm into practice, but it is acknowledged
that wet-lab experiment takes a very long time for validation.

We do not allow using our models in production without authorization due to potential negative social
impacts.
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Figure 13: TreeBandit Compared to baselines

G Regret Theory under GP Fitness Supplementary Materials

G.1 GP Modeling of f⋆

For theoretical analysis, we consider a Bayesian learning setting where the ground truth f⋆ is assumed
to follow a Gaussian Process (GP) prior, and the evaluation of F (x) is assumed to be corrupted by
Gaussian noise. GP model is well studied and widely applied in machine learning [35], especially in
classic bandit optimization [40, 11].
Assumption G.1. f⋆ : Rd → R is a sample from the Gaussian process GP(0, k(·, ·)) (with known
kernel function k(·, ·)) as priori, i.e.

f⋆(ϕ(x)) ∼ GP (0, k(ϕ(x), ϕ(x′))) . (6)

Assumption G.2. For any sequence x, querying its fitness F (x) returns a noisy feedback F̃ (x)
corrupted by a Gaussian, i.e.

F̃ (x) = f⋆(ϕ(x)) + ϵ, (7)
where ϵ ∼ N (0, λ) , λ > 1 and is sampled independently from the history.

For more details on the Gaussian Process and the update rule of ft, please refer to the appendix.

G.2 Bayesian Regret

Motivated by the practical consideration that high-potential variants usually appear within a small
count of mutations from a wildtype and function approximation generalizes better in a local region
where most data lies, we focus on a local searching region X̄ := {x : d(x, xwt) ≤ N} ⊂ X and aim
to identify the optimal sequences within X̄ . Here d(·, ·) denotes the hamming distance between any
two arbitrary sequences in X and N controls the mutation counts (the depth of tree search).

Therefore, under the setups on GP function and local searching, the Bayesian regret of a learning
algorithm is defined as :
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Definition G.3 (Bayesian Regret). For a series of sequences {xt}Tt=1 within the searching region
X̄ ⊂ X , the accumulated Bayesian regret is defined as

BayesRGT(T ) = E

[
T∑

t=1

(
max
x∈X̄

F (x)− F (xt)
)]

, (8)

where E is taken over the prior Gaussian process from which f⋆ is sampled and other randomness in
{xt}Tt=1.

Next in Theorem 3.2, Alg. 1 is proven to explore the local sequence space via tree search and bandit
learning, while attaining low regret.

Assuming ϕ is Lipschitz, the local searching region X̄ is mapped toD := {ϕ(x) : ∥ϕ(x)−ϕ(xwt)∥ ≤
R := LN}, a region surrounding ϕ(xwt) in Rd.

Assumption G.4. At each time step t, ft is bounded in D. For ∀t, z ∈ D,

|ft(z)| ≤ B. (9)

Also, assume ft is locally concave in D and attains its maximal value in the interior of D.

G.3 Rate of regret

The highest order term in (3) is of O
(
γT
√
T
)

, which matches the results by [40, 11] studying

GP bandits. (3) turns out to be Õ
(
d
√
T
)

(with γT = d log T ) when k(·, ·) in the prior is linear,
which downgrades the GP model to the d-dim Bayesian linear model. It’s worth mentioning that the
recovered Õ

(
d
√
T
)

bound improves [50] by a factor of
√
d, benefiting from the stability brought by

ft’s rare switching.Here the information gain is closely related to the ”effective dimension” of the
chosen kernel, which is a natural and common complexity metric for online exploration.

H Theory Details

H.0.1 Preliminaries of GP

Conditioned the set of screen data {(ϕ(xi), F̃ (xi))}t−1
i=1 collected up to step t, the posterior distribution

of f⋆ corresponding to the prior GP (0, k(·, ·)) is still a Gaussian process GP(mt, kt).

Definition H.1 (Posterior GP(mt, kt)). mt : Rd → R and kt : Rd × Rd → R are defined on the
embedding space and have the form:

mt(ϕ(x)) = kt−1(ϕ(x))
⊤ (Kt−1 + λI)

−1
F̃t−1, (10)

kt (ϕ(x), ϕ(x
′)) = k (ϕ(x), ϕ(x′))

− kt−1(ϕ(x))
⊤ (Kt−1 + λI)

−1
kt−1(ϕ(x

′)), (11)

where kt(ϕ(x)) = (k (ϕ(x1), ϕ(x)) , · · · , k (ϕ(xt), ϕ(x)))⊤, Kt is the kernel matrix

[k(ϕ(x), ϕ(x′))]x,x′∈At
, At = {x1, · · · , xt} and F̃t =

(
F̃ (x1), · · · , F̃ (xt)

)⊤
.

To establish cumulative regret bounds for GP optimization, a quantity to define is the maximum
information gain γt:

Definition H.2 (Maximum Information Gain). Define the maximum information gain over t rounds
as

γt := max
A⊂Rd:|A|=t

I (yA; f
⋆
A) , (12)

where I (yA; f
⋆
A) denotes the mutual information between f⋆A := [f⋆(ϕ(x))]x∈A and yA :=

f⋆A + ϵA, where ϵA ∼ N
(
0, λI|A|

)
. Thus I (yA; f

⋆
A) = 1

2 log det
(
I + λ−1KA

)
, where KA =

[k (ϕ(x), ϕ(x′))]x,x′∈A.
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H.0.2 Rarely Switching in ft

Posterior sampling is a natural choice to update ft, that is sample ft ∼ GP(mt, kt) at each step t.
For the sake of a tighter regret bound, we analyse the version of Alg.1 where let Vt = Kt−1 + λI ,{

ft ∼ GP(mt, kt), if det(Vt)/ det(Vpre(t)) > 2;
ft ← ft−1, otherwise. (13)

with pre(t) denotes the last time step provious to t when ft is sampled from the posterior. Here, we
keep track of the growth in det (Kt + λI) and keep ft the same unless the determinant is doubled.
Rarely switching is a common technique in online learning [1, 24] to save computation and it helps
stabilize Alg.1 by reducing the fluctuation in ft over time. By using this adaptive update schedule,
we will show in Theorem 3.2 that a total of O (γT ) updates is sufficient without compromising the
efficiency in learning f⋆.

I Proof of Themorem 3.2

Recall the definition of Bayesian regret and write out an equivalent expression with embedding ϕ(x):

BayesRGT(T ) = E

[
T∑

t=1

(
max
x∈X̄

F (x)− F (xt)
)]

⇔ E

[
T∑

t=1

(
max

ϕ(x)∈D
f⋆(ϕ(x))− f⋆(ϕ(xt))

)]
, (14)

as well as Condition 3.1 characterizing the max-fitness series {xt}Tt=1 to study:

Ft(xt) ≥ max{Ft(x) | ∥ϕ(x)− ϕ(xt−1)∥ ≤ r}
⇔ ft(ϕ(xt)) ≥ max{ft(ϕ(x)) | ∥ϕ(x)− ϕ(xt−1)∥ ≤ r}. (15)

From the RHS of (14) and (15), the embedding vectors {ϕ(xt)}Tt=1 fully determine the regret and
identify the max-fitness sequence {xt}Tt=1. Therefore, the proof of Theorem 3.2 can be conducted on
the embedding level, that is, essentially it suffices to prove Alg.3(a revision of Alg.1) satisfies

BayesRGT(T ) = E

[
T∑

t=1

(
max
x∈D

f⋆(x)− f⋆(xt)
)]

= O

(
βT
√
λTγT +BγT

(
1 +

4L2N2

r2

))
, (16)

where βT = E [∥f⋆∥k] +
√
λ
√
2 lnT + 1 + γT−1 +

√
2 lnT when the noise level λ = 1 + 1

T .

Important Remark on Notations and Alg.3. Throughout the proof, we abuse the notation x for an
arbitrary sequence in X to represent its known d-dim embedding vector ϕ(x) unless we specifically
clarify in text. Alg.3 rewrites Alg.1 on the embedding level (translating each step of Alg.1 into what
happens to the embedding vectors) to reflect our reduction in analysis. Also, Alg.3 integrates the
pseudo-code for updating ft corresponding to (13) (Line 4-9) and Condition 3.1 by rewriting it as (17)
(Line 22). Recall D is the local embedding space, Kt is the kernel matrix, λ is the std. of noise, mt

and kt define the posterior GP, and u(xt) (xt: embedding vector) corresponds to the noisy feedback
F̃ (xt) (xt: original sequence in X ).

I.1 Tree Search and Proximal Iteration

Given the previous iterate xt−1 and an estimate ft of the fitness, (17) ensures xt is at least as good as
the optimal solution of the locally constrained optimization:

max
x

ft(x),

s.t. ∥x− xt−1∥2 ≤ r. (18)
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Algorithm 3 Revision of Alg. 1 with Monitored Posterior Updates

1: Input: total rounds T .
2: Initialize: x0 ∈ D, k = 0, V0 = 0 and dataset S0 ← ∅.
3: for t = 1, . . . , T do
4: Kernel matrix monitoring:

V = Kt−1 + λI.

5: if det(V )/ det(Vk) > 2 then
6: Update: k ← k + 1, Vk ← V.
7: Thompson Sampling:

ft(·) ∼ GP(mt, kt).

8: else
9: ft(·)← ft−1(·).

10: end if
11: Tree Search: filter out xt s.t.

ft(xt) ≥ max{ft(x) | ∥x− xt−1∥ ≤ r}. (17)

12: Data collection: St ← St−1 ∪ {(xt, u(xt))}.
13: end for

Consider the proximal point of xt−1 under ft with step size α:

x̃t = Pα,ft(xt−1) := argmax
x∈D

ft(x)−
1

2α
∥x− xt−1∥2. (19)

Note that the expression of (19) differs from the classic definition of proximal point by the constraint
onD. However, this is a minor difference as the objective ft(x)− 1

2α∥x− xt−1∥2 is strongly concave
on D and x̃t is in the interior of D under Assumption G.4. The optimal condition of (19) ensures

x̃t − xt−1 ∈ α · ∇ft(x̃t). (20)

By setting a proper α, we are able to show xt has more improvement in ft value than x̃t.

Proposition I.1. When α = r2

4B , ft(xt) ≥ ft(x̃t).

Proof. It’s obvious that ft(xt) ≥ ft(x̃t) holds when x̃t ∈ B (xt−1, r) := {x : ∥x− xt−1∥2 ≤ r}. If
α = r2

4B , then for ∀x ̸∈ B (xt−1, r), ft(x)− 1
2α∥x− xt−1∥2 ≤ ft(x)− r2

2α = ft(x)− 2B ≤ −B ≤
ft(xt−1), thus x̃t ∈ B (xt−1, r).

I.2 Regret Decomposition

Recall from the preliminaries of GP, {ft} is a sequence of online learning models of the ground truth
f⋆ s.t.

E[max
x∈D

ft(x)] = E[max
x∈D

f⋆(x)],

then the total regret of {xt} is decomposed as

E

[
T∑

t=1

max
x∈D

f⋆(x)− f⋆(xt)

]

=E

[
T∑

t=1

max
x∈D

ft(x)− ft(xt)

]
+ E

[
T∑

t=1

ft(xt)− f⋆(xt)

]
.

Re-indexing {xt}Tt=1 (Phase Index). Suppose ft is updated at time steps {tk}Kk=0, where t1 =

1, t2 = 1 + n1, · · · , tK = 1 +
∑K−1

k=1 nk, T =
∑K

k=1 nk with nk,K ∈ N⋆. It indicates that the
whole timeline t ∈ [T ] is partitioned into K phases of length {nk}Kk=1. The k-th phase is governed
by one unchanging function ftk , i.e. ∀t ∈ [T ], k ∈ [K] s.t. tk ≤ t < tk+1, we have ft = ftk . To
reflect which phase xt is in, we assign the “phase index” xk,i, i ∈ [nk] to xt, t ∈ [tk, tk+1).
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I.3 Regression Error E
[∑T

t=1 ft(xt)− f⋆(xt)
]

Lemma I.2. Under Assumption G.1 and G.2, the total number of updates satifies K ≤ O (γT ) and

E

[
T∑

t=1

ft(xt)− f⋆(xt)

]
= O

(
βT
√
λTγT

)
,

where βT = 2
√

2 lnT + 1 + γT−1 +
√
2 lnT when λ = 1+ 1

T and γT is the maximum information
gain.

I.4 Optimization Error E
[∑T

t=1 maxx∈D ft(x)− ft(xt)
]

To stabilize evolution, we keep using a same model ft throughout multiple rounds. Re-indexing {xt}
to reflect the update of ft , we have

E

[
T∑

t=1

max
x∈D

ft(x)− ft(xt)

]

=E

[
K∑

k=1

nk∑
i=1

max
x∈D

ftk(x)− ftk(xk,i)

]
. (21)

Here {xk,i}nk
i=1 is nk-long segment of the whole trajectory seeking to maximize ftk in an evolutionary

fashion. As shown in Proposition I.1, for every iterate xt, there exists a proximal point iterate x̃t
whose ft value lower bounds ft(xt), i.e. ∀k ∈ [K],

x̃k,1 := xk,1, x̃k,i+1 := Pα,ftk
(xk,i),∀i ∈ [nk − 1];

ftk(x̃k,i) ≤ ftk(xk,i).

Lemma I.3. Under Assumption G.4 and Condition 3.1 and with α = r2

4B ,

K∑
k=1

nk∑
i=1

max
x∈D

ftk(x)− ftk(x̃k,i) ≤ O
(
K

(
B +

R2

α

))
= O

(
KB

(
1 + 4

R2

r2

))
. (22)

where the RHS also upper bounds E
[∑T

t=1 maxx∈D ft(x)− ft(xt)
]

and by the assumption that the
embedding map ϕ is Lipschitz, R = LN .

I.5 Final Regret Bound

Combining Lemma I.2 and I.3, the proof of Theorem 3.2 completes.

J Omitted Proofs in Appendix I

J.1 Proof of Lemma I.2

Proof. By our updating rule for the posterior

2K ≤det (λI +Kt1−1)

det (λI)
· det (λI +Kt2−1)

det (λI +Kt1−1)
· · ·

det (λI +KtK−1)

det
(
λI +KtK−1−1

) ≤ det
(
I + λ−1KT

)
. (23)

Therefore,
K ≤ ln

(
det
(
I + λ−1KT

))
≤ 2γT . (24)
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Denote by ∥f⋆∥k the norm of function f⋆ in the RKHS associated with kernel k(·, ·). From the
Theorem 2 in [11], then with probability at least 1− δ, the following holds for all x ∈ Rd and t ≥ 1 :

|mt(x)− f⋆(x)|

≤

(
∥f⋆∥k +

√
λ

√
2

(
ln

1

δ

)
+ ln (det (λI +Kt−1))

)
σt(x) (25)

≤

(
∥f⋆∥k +

√
λ

√
2

(
ln

1

δ

)
+ (t− 1) lnλ+ γt−1

)
σt(x), (26)

where mt(x), σ
2
t (x) are the mean and variance of the posterior distribution of f⋆(x) defined as in

(10) and (11). Also, according to the sampling distribution of ft(x), which isN (mt(x), σt(x)), with
probability 1− δ, it holds for all {xt}Tt=1 (or {{xk,i}nk

i=1}Kk=1 indexed by phases) that

|ftk (xk,i)−mtk(xk,i)| ≤ σtk (xk,i)

√
ln

(
T

δ

)
. (27)

Let βT = ∥f⋆∥k +
√
λ
√

2
(
ln 1

δ

)
+ (T − 1) lnλ+ γT−1 +

√
ln
(
T
δ

)
, then

K∑
k=1

nk∑
i=1

|ftk(xk,i)− f⋆(xk,i)|

≤βT
K∑

k=1

nk∑
i=1

σtk (xk,i)

≤βT

√√√√Tλ

K∑
k=1

nk∑
i=1

λ−1σ2
tk
(xk,i)

≤βT

√√√√4Tλ

K∑
k=1

nk∑
i=1

1

2
ln
(
1 + λ−1σ2

tk
(xk,i)

)
.

According to Lemma 3 in [11], we have

1

2

T∑
t=1

ln
(
1 + λ−1σ2

t (xt)
)
≤ γt. (28)

Suppose xk,i corresponds to xt under the phase indexing, consider the following ratio

σ2
tk
(xk,i)

σ2
t (xt)

,

where tk ≤ t− 1 is the time step where the posterior Gaussian process was updated for the k-th time.
Recall from (11),

σ2
t (x) = kt (x, x) = k (x, x)− kt−1(x)

⊤ (Kt−1 + λI)
−1

kt−1(x),

where k(x, x′) = ϕ(x)⊤ϕ(x′) with ϕ(x) being the possibly infinite dimensional feature of x. Hence
by defining the t×∞ matrix Φt = {ϕ(x1), · · · , ϕ(xt)}⊤, we have Kt−1 = Φt−1Φ

⊤
t−1 and

σ2
t (x) = ϕ(x)⊤ϕ(x)− ϕ(x)⊤Φ⊤

t−1 (Kt−1 + λI)
−1

Φt−1ϕ(x)

= ϕ(x)⊤
(
It−1 − Φ⊤

t−1 (Kt−1 + λI)
−1

Φt−1

)
ϕ(x)

= λϕ(x)T
(
ΦT

t−1Φt−1 + λI
)−1

ϕ(x).
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Therefore,

σ2
tk
(xk,i)

σ2
t (xt)

≤
det
(
λ−1ΦT

t−1Φt−1 + I
)

det
(
λ−1ΦT

tk−1Φtk−1 + I
)

=
det
(
λ−1Kt−1 + I

)
det (λ−1Ktk−1 + I)

≤
det
(
λ−1Ktk+1−1 + I

)
det (λ−1Ktk−1 + I)

≤ 2, (29)

where we used tk ≤ t ≤ tk+1 and we end up with
K∑

k=1

nk∑
i=1

|ftk(xk,i)− f⋆(xk,i)| ≤ O
(
βT
√
λTγT

)
. (30)

holds for any realization of f⋆ with probability 1
δ when βT = ∥f⋆∥k +

√
λ
√
2
(
ln 1

δ

)
+ (T − 1) lnλ+ γT−1 +

√
ln
(
T
δ

)
.

Taking δ = 1
T and λ = 1 + 1

T and taking expectation of 30 on both side, we have

E

[
K∑

k=1

nk∑
i=1

|ftk(xk,i)− f⋆(xk,i)|

]
≤ O

(
βT
√
λTγT

)
with βT = E [∥f⋆∥k] +

√
λ
√
2 lnT + (T − 1) lnλ+ γT−1 +

√
2 lnT ≤ E [∥f⋆∥k] +

2
√
2 lnT + 1 + γT−1 +

√
2 lnT .

J.2 Proof of Lemma I.3

Lemma J.1. For a concave f with z⋆ being one of its maxima, a sequence of iterates zt following
the proximal point update

zt+1 = Pα,f (zt) (31)
satisfies ∑

t

f(z⋆)− f(zt) ≤
1

2α
∥z1 − z⋆∥2. (32)

Proof. Given zt+1 = Pα,f (zt), we have

zt+1 − zt ∈ α · ∂f(zt+1). (33)

For any z, by the concavity of f

f(z)− f(zt+1) ≤ ⟨∂f(zt+1), z − zt+1⟩

=
1

α
⟨zt+1 − zt, z − zt+1⟩

=
1

2α

[
∥z − zt∥2 − ∥zt+1 − zt∥2 − ∥z − zt+1∥2

]
≤ 1

2α

[
∥z − zt∥2 − ∥z − zt+1∥2

]
.

Taking z as z⋆, we have

f(z⋆)− f(zt+1) ≤
1

2α

[
∥z⋆ − zt∥2 − ∥z⋆ − zt+1∥2

]
.

By Lemma J.1, for ∀k ∈ [K], under Assumption G.4, suppose x⋆k ∈ argmaxx∈D ftk(x), we have
nk∑
i=1

max
x∈D

ftk(x)− ftk(x̃k,i) ≤ max
x∈D

ftk(x)− ftk(x̃k,1) +
1

2α
∥x⋆k − x̃k,1∥2 ≤ 2B +

2R2

α
.
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