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Abstract

Deep generative models for structure-based drug design (SBDD), where molecule1

generation is conditioned on a 3D protein pocket, have received considerable inter-2

est in recent years. These methods offer the promise of higher-quality molecule3

generation by explicitly modelling the 3D interaction between a potential drug4

and a protein receptor. However, previous work has primarily focused on the5

quality of the generated molecules themselves, with limited evaluation of the 3D6

poses that these methods produce, with most work simply discarding the generated7

pose and only reporting a “corrected” pose after redocking with traditional meth-8

ods. Little is known about whether generated molecules satisfy known physical9

constraints for binding and the extent to which redocking alters the generated10

interactions. We introduce POSECHECK, an extensive analysis of multiple state-11

of-the-art methods and find that generated molecules have significantly more12

physical violations and fewer key interactions compared to baselines, calling into13

question the implicit assumption that providing rich 3D structure information im-14

proves molecule complementarity. We make recommendations for future research15

tackling identified failure modes and hope our benchmark will serve as a spring-16

board for future SBDD generative modelling work to have a real-world impact.17

Our evaluation suite is easy to use in future 3D SBDD work and is available at18

https://anonymous.4open.science/r/posecheck-358E.19

1 Introduction20

Structure-based drug design (SBDD) [1, 2, 3] is a cornerstone of drug discovery. It uses the 3D21

structures of target proteins as a guide to designing small molecule therapeutics. The intricate atomic22

interactions between proteins and their ligands shed light on the molecular motifs influencing binding23

affinity, selectivity, and drug-like properties. Employing computational methods such as molecular24

docking [4, 5], molecular dynamics simulations [6], and free energy calculations [7], SBDD aids in25

the identification and optimization of potential drug candidates.26

Deep generative models for SBDD have recently attracted considerable attention in the ML commu-27

nity [8, 9]. These models learn from vast compound databases to generate novel chemical structures28

with drug-like properties [10]. By explicitly integrating protein structure information, these models29

aim to generate ligands with a higher likelihood of binding to the target protein. In particular, advance-30

ments in geometric deep learning [11, 12, 13] have led to a new suite of generative methods, enabling31

the design of 3D molecules directly within the confines of the target protein [14, 15, 16, 17, 18].32

These methods, which concurrently generate a molecular graph and 3D coordinates, provide the33

significant advantage of obviating the need for determining the 3D pose post hoc through traditionally34

slow molecular docking programs – at least in theory.35
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Figure 1: Top: Overview of a conventional pipeline of SBDD with 3D generative modelling. A
generative model is usually trained using experimental or synthetic protein-ligand complexes, from
which new molecules and poses can be sampled de novo. Typically, generated poses are discarded
and redocked into the receptor, and primarily evaluated on 2D molecular graphs (e.g. QED). The
effect of redocking on the final complex is often unknown, preventing understanding of the common
failure modes of the trained model and therefore inhibiting progress. Bottom: the POSECHECK
benchmarks for generated poses include pipeline-wide as well as component-wise metrics, enabling
a targeted evaluation of each model component guiding further model development.

Assessing the quality of molecules generated by these methodologies is not straightforward, with36

little work on experimental validation, especially for de novo design [19]. Typical evaluation metrics37

(Figure 1a) focus primarily on the 2D graph of the generated molecules themselves, measuring38

their physicochemical properties (e.g. QED [20]) and adherence to drug discovery heuristics (e.g.39

Lipinski’s Rule of Five [21]). For effective SBDD, we argue that it’s equally essential to assess the40

quality of the generated binding poses and their capacity to satisfy known biophysical prerequisites41

for binding (Figure 1b). This perspective is essential if these methods are to serve as practical42

alternatives to traditional virtual screening approaches in SBDD.43

We hypothesise that multiple failure modes, undetected by currently applied metrics, are inherent44

within these methods. The situation is further complicated by the common practice of disregarding45

the initially generated pose and then redocking the molecule to attain a potentially enhanced pose46

and only reporting these scores [16, 15, 18, 22]. This strategy tends to focus on presenting only47

the outcomes of the redocked molecule, and it is not clear whether molecules shown in figures are48

generated or redocked, making the accurate assessment of pose quality an increasingly intricate49

challenge.50

Our primary contributions are summarized as follows: We introduce POSECHECK, a set of new51

biophysical benchmarks for SBDD models, expanding the traditional ‘pipeline-wide’ framework by52

integrating ‘component-wise’ metrics (i.e. generated and redocked poses), leading to comprehensive53

and precise model assessment. Utilizing this new framework, we evaluate a selection of high-54

performing machine learning SBDD methods, revealing two key findings: (1) generated molecules55

and poses often contain nonphysical features such as steric clashes, hydrogen placement issues,56

and high strain energies, and (2) redocking masks many of these failure modes. Based on these57

evaluations, we propose targeted recommendations to rectify the identified shortcomings. Our work58

thus provides a roadmap for addressing critical issues in SBDD generative modelling, informing59

future research efforts.60
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2 Background61

Deep Generative Models for 3D Structure-based Drug Design Many works have recently tried62

to recast the SBDD problem as learning the 3D conditional probability of generating molecules given63

a receptor, allowing users to sample new molecules completely de novo inside a pocket. Common64

methods utilize Variational AutoEncoders (VAEs) [23], Generative Adversarial Networks (GANs)65

[24], Autoregressive (AR) models and recently Denoising Diffusion Probabilistic Models (DDPMs)66

[25]. LiGAN [14] uses a 3D convolutional neural network combined with a VAE model and GAN-67

style training. 3DSBDD [15] introduced an autoregressive (AR) model that iteratively samples from68

an atom probability field (parameterised by a Graph Neural Network) to construct a whole molecule,69

with an auxiliary network deciding when to terminate generation. Pocket2Mol [16] extended this70

work with a more efficient sampling algorithm and better encoder. DiffSBDD [17], DiffBP [26] and71

TargetDiff [17] are all conditional DDPMs conditioned on the 3D target structure. DecompDiff [27]72

is another diffusion model that decomposes the ligand into fragments for which it considers separate73

priors for the diffusion process. FLAG [22] chooses a fragment from a motif vocabulary based on74

the protein structure and composes it with other motifs into a final ligand in an iterative fashion.75

GraphBP [28] utilises an autoregressive flow model to formulate the ligand design as a sequential76

generation task.77

Related work Guan et al. [17] perform limited analysis of small chemical sub-features, such as78

agreement to experimental atom-atom distances and the correctness of aromatic rings within the79

generated molecule. Baillif et al. [19] emphasize the necessity of 3D benchmarks for 3D generative80

models. However, both of these works study the molecules in isolation rather than the protein-ligand81

context. Both DecompDiff [27] and DiffBP [26] take steric clashes into account via their loss82

functions, but do not include steric clashes as a metric in their evaluation. TargetDiff [17] includes an83

analysis of Vina Scores but does not report any standard deviations on these. However, these standard84

deviations are critical in evaluating the performance of these models as we demonstrate in this paper.85

The concurrent work PoseBusters [29] also focuses on benchmarking the biophysical plausibility of86

protein-ligand poses but focuses on evaluating docking tools instead of molecular generation models.87

They also find generalisation to new sequences to be poor.88

3 Methods89

In order to evaluate the quality of generated poses and their capacity to facilitate high-affinity90

protein-ligand interactions, we present a variety of computational methods and benchmarks in this91

section. These methodologies provide a thorough perspective on the poses produced and illuminate92

the ability of generative models to generate trustworthy and significant ligand conformations. Full93

implementation details are given in Appendix A.94

Interaction fingerprinting Interaction fingerprinting is a computational method utilized in SBDD95

to represent and analyze the interactions between a ligand and its target protein. This approach96

encodes specific molecular interactions, such as hydrogen bonding and hydrophobic contacts, in a97

compact and easily comparable format – typically as a bit vector, known as a interaction fingerprint98

[30, 31]. Each element in the interaction fingerprint corresponds to a particular type of interaction99

between the ligand and a specific residue within the protein binding pocket. We compute interactions100

using the ProLIF library [30].101

Steric clashes In the context of molecular interactions, the term steric clash is used when two102

neutral atoms come into closer proximity than the combined extent of their van der Waals radii [32].103

This event indicates an energetically unfavourable [33], and thus physically implausible, interaction.104

The presence of such a clash often points towards the current conformation of the ligand within the105

protein being less than optimal, suggesting possible inadequacies in the pose design or a fundamental106

incompatibility in the overall molecular topology. Hence, the total number of clashes serves as a vital107

performance metric in the realm of SBDD. We stipulate a clash to occur when the pairwise distance108

between a protein and ligand atom falls below the sum of their van der Waals radii, allowing a clash109

tolerance of 0.5 Å.110
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TargetDiff
Target: 1H0I
RMSD: 2.0 Å

Pocket2Mol
Target: 3TYM
RMSD: 6.47 Å

Figure 2: Left: RSMD between the generated and SMINA minimized poses for CrossDocked and all
generative methods (note FLAG upper whister value is not shown to preserve a meaningful scale).
Right: Examples of large conformational rearrangments in the ligand upon redocking.

Strain-energy Strain energy refers to the internal energy stored within a ligand as a result of111

conformational changes upon binding. When a ligand binds to a protein, both the ligand and the112

protein may undergo conformational adjustments to accommodate each other, leading to changes113

in their bond lengths, bond angles, and torsional angles. These changes can cause strain within the114

molecules, which can affect the overall binding affinity and stability of the protein-ligand complex115

[34]. Whilst there is always a trade-off between enthalpy and entropy, generally speaking, lower strain116

energy results in more favourable binding interactions and potentially more effective therapeutics.117

We calculate the strain energy as the difference between the internal energy of a relaxed pose and118

the generated pose (without pocket). Both relaxation and energy evaluation are computed using the119

Universal Force Field (UFF) [35] using RDKit.120

Docking Our final assessment involves measuring the level of agreement between the docking121

programs and the molecules produced by the learned distribution in the generative model. Although122

this is the most coarse-grained approach we employ and docking programs come with their inherent123

limitations, they nevertheless contain useful proxies and serve as valuable tools for comparison. In124

this procedure, we redock the generated pose using SMINA [36]. Next, we compute the Root Mean125

Squared Deviation (RMSD) between the generated pose and the docking-predicted one across all126

generated molecules, thereby obtaining a distribution of RMSD values.127

4 Results128

4.1 Experimental Setup129

In our study, we evaluate the quality of poses from seven recent methods: LiGAN [14], 3DSBDD130

[15], Pocket2Mol [16], TargetDiff [17], DiffSBDD [18], DecompDiff [27] and FLAG [22]. All131

models were trained on the CrossDocked2020 [37] dataset using the dataset splits computed in Peng132

et al. [16], which used a train/test split of 30% sequence identity to give a test set of 100 target133

protein-ligand complexes which we use for evaluation. For each model, we sampled 100 molecules134

per target. We give a more detailed overview of the CrossDocked dataset and its limitations in135

Appendix A.136

4.2 Agreement with docking scoring functions137

Results To discern whether the generated poses/binding modes produced by these models corre-138

spond to overall low energy states with few physical violations, our preliminary analysis involves139

determining the extent to which minimized poses preserve information from the initially generated140

binding mode. Therefore, we proceed to compute the RMSD between the model-generated pose and141

SMINA-minimized pose [36], with a lower RMSD value denoting a higher degree of agreement.1142

The distributions of SMINA-minimization RMSDs of various methods are illustrated in Figure 2.143

We first consider CrossDocked as a baseline, which has a mean minimization RMSD of 0.59 Å.144

1To provide perspective, it’s worth noting that a carbon-carbon bond generally measures 1.54 Å in length.
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TargetDiff 
0 donors, 2 acceptors

CrossDocked
4 donors, 4 acceptors
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Figure 3: Interactions between protein and ligands as seen in generated poses (orange) and redocked
poses (green). The frequency of (a) hydrogen bond acceptors and (b) hydrogen bond donors are
considered. We find that generative models have significant trouble making hydrogen bond interac-
tions compared to baseline (shaded boxes). Vertical histogram box sizes are normalised along the
x-axis such that all have the same area. (c) Example from CrossDocked with large hydrogen bonding
network. (d) Typical example from a generative models with low number of HBs.

Given that all the generative models were trained on these poses, we would expect to observe similar145

performance. However, we find that all methods (except FLAG) have a mean score between 0.94 and146

1.28 Å, suggesting that the generated binding poses are very far from low-energy states. We observe147

little correlation between method types here except for the two similar AR models, 3DSBDD and148

Pocket2Mol, which obtain mean RMSDs of 0.99 and 1.02 Årespectively. FLAG is the most egregious149

example with on average 3.64 ÅRMSD during minimization and a maximum value of 10.72 Å, an150

extreme value for local minimisation.151

Discussion These findings raise concerns for several reasons. They expose the minimal concordance152

between the binding models learned by these methods and the established SMINA methodology153

[5], despite it being the source of training data. More critically, they underline the lack of accurate154

evaluations of generative models’ capability to produce realistic binding poses; instead, these models155

tend to generate drug-like molecules with vague binding modes, later rectified through docking.156

We also calculated the RMSD between the generated and highest affinity redocked pose but were not157

able to discern any reasonable signal-to-noise over the baseline dataset. We hypothesise that this may158

be due to the fact that Francoeur et al. [37] provided up to 20 poses for every ligand, resulting in 22.5159

million complexes, and the processing done in Peng et al. [16] is not clear on which poses they chose,160

meaning these models may not have been trained on the lowest affinity poses.161

4.3 Protein-ligand interaction analysis162

Evaluation Below describe the classes of interaction that we evaluate. Hydrogen bonds (HBs) are163

a type of interaction that occurs between a hydrogen atom that is bonded to a highly electronegative164

atom, such as nitrogen, oxygen, or fluorine [38]. They are key to many protein-ligand interactions165

[39] and require very specific geometries to be formed [40]. The directionality of HBs confers unique166

identities upon the participating atoms: hydrogen atoms attached to electronegative elements are167

deemed ‘donors’, whilst the atom accepting the HB is termed an ‘acceptor’. Van der Waals contacts168

(vdWs) are interactions that occur between atoms that are not bonded to each other. These forces can169

be attractive or repulsive and are typically quite weak [41]. However, they can be significant when170

many atoms are involved, as is typical in protein-ligand binding [42]. Hydrophobic interactions171

are non-covalent interactions that occur between non-polar molecules or parts of molecules in a172

water-based environment. They are driven by the tendency of water molecules to form hydrogen173

bonds with each other, which leads to the exclusion of non-polar substances. This exclusion principle174

prompts these non-polar regions to orient away from the aqueous environment and towards each other175

[43], thereby facilitating the association between protein and ligand molecules [44].176

5



Results Distributions of hydrogen bonding interactions are shown in Figure 3. We consider whether177

our generative models can design molecules with adequate hydrogen bonding and find that no method178

can match or exceed the baseline. In the reference set, CrossDocked, the modal number of HBs for179

both acceptors and donors is 1, with means of 2.23 and 1.66 for acceptors and donors respectively.180

Strikingly, we find that in all generated poses for all models (except LiGAN HB acceptors) the most181

common number of HB acceptors and donors is 0, with means varying between 0.36-1.73 for HB182

acceptors and 0.26-0.85 for HB donors. We find an average difference of 0.50 and 0.81 HBs between183

the best-performing models and the baseline for acceptors and donors respectively. Results for Van184

der Waals contacts and hydrophobic interactions are closer to the dataset baseline (see Appendix185

Figure 6), possibly as these are easier to form.186

Discussion Conventional wisdom would suggest that many minor imperfections in the generated187

pose would be simply fixed by redocking the molecule (e.g. moving an oxygen atom slightly to188

complete a hydrogen bond.) We find this is in fact rarely the case, with redocking sometimes being189

significantly deleterious (see examples of LiGAN in Figure 3), suggesting that there are either190

limitations in the docking function used or, more likely, the generated interaction was physically191

implausible to begin with.192

4.4 Clash scores193

DiffSBDD, redocked
4 clashes

DiffSBDD, generated
62 clashes

Figure 4: Left: number of steric clashes for the CrossDocked reference dataset as well as for the
molecules generated by each model, both before and after redocking. Right: examples of a generated
pose (magenta) and the same pose after redocking (green).

Results Figure 4 presents the results of the steric clash analysis. In summary, the latest methods,194

particularly those employing diffusion models and fragment libaries, exhibit poor performance in195

terms of steric clashes compared to the baseline, with a significant number of outliers. Although196

redocking mitigates clashes to some extent, it does not always resolve the most severe cases.197

The CrossDocked test set has a low number of clashes with few extreme examples, with a mean198

of 4.59, upper quantile of 6 and maximum value of 17. In terms of generated poses, the older199

methods perform best, with 3DSBDD and LiGAN having means of 3.79 and 3.40 clashes respectively.200

Pocket2Mol, an extension of 3DSBDD, performs worse with a mean clash score of 5.62 and upper201

quantile of 8 clashes. Finally, the diffusion-based approaches perform poorly with mean clash scores202

of 15.33, 9.03 and 7.13 for DiffSBDD, TargetDiff and DecompDiff respectively. The tail end of their203

distributions is also high, with the methods having upper quantiles of 18, 11 and 9 clashes respectively,204

with TargetDiff having the worst case of 264 steric clashes. FLAG has the worst generated clash205

scores by far, with mean and median clash scores of 110.96 and 91 respectively. Redocking the206

molecules generally fixed many clashes and improved scores, especially for FLAG, where the mean207

clash score improves from 110.96 to 5.55. The mean clash score for Pocket2Mol improves from 5.62208

to 2.98, TargetDiff from 9.08 to 5.79 and DiffSBDD from 15.34 to 3.61.209

Discussion Interestingly, DiffSBDD and TargetDiff, which are considered state-of-the-art based210

on mean docking score evaluations [17, 18], exhibit subpar performance in their number of clashes.211

They aim to learn atom position distributions without explicit constraints on final placements. While212

DiffSBDD starts with a performance deficit, its enhanced clash mitigation during redocking elevates213

its results to match the baseline, highlighting methodological distinctions between it and TargetDiff.214
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Notably, 3DSBDD and LiGAN show low clash scores, with the former positioning atoms within a215

predefined voxel grid [15] and the latter applying a clash loss [14]. DecompDiff also applies a steric216

clash loss (but does not directly measure clashes in the corresponding publication) [27] and performs217

best out of all the diffusion-based approaches. Generated molecules for FLAG were most egregious218

here; we speculate this is a result of first choosing a fragment from a fragment vocabulary using a219

softmax function and then forcing the placement of the fragment [22], regardless of whether it fits220

sterically.221

Our findings affirm the assumption that redocking alleviates many minor clashes, akin to the force-222

field relaxation step in AlphaFold2 [45]. We initially speculated that molecules with clashes exceeding223

100 had been mistakenly generated inside the protein pocket. Yet, we often discovered fragments224

within highly constrained nooks, especially worsened with the addition of hydrogen atoms.225

Limitations An important consideration to bear in mind is that proteins are not entirely rigid226

receptors. They can often experience limited conformational rearrangements to accommodate227

molecules of varying shapes and sizes [46]. Consequently, conducting generation and redocking in a228

rigid receptor environment may not yield accurate scores for potentially plausible molecules. Note all229

these results are with a generous clash tolerance of 0.5 Å (roughly half the vdW radii of a hydrogen230

atom), in order to be able to resolve differences between methods.231

4.5 Strain energy232

LiGAN (5BUR) 
Strain: 438,503 kcal/mol

TargetDiff (2F2C) 
Strain: 2,500 kcal/mol

3DSBDD (3V4T) 
Strain: 93,256 kcal/mol

DiffSBDD (1AFS) 
Strain: 300 kcal/mol

Pocket2Mol (1AFS) 
Strain: 300 kcal/mol

CrossDocked (4Q8B) 
Strain: 38 kcal/mol

Figure 5: Left: CDF of strain energies. Right: Examples of molecules with high strain energy.

Results To conclude our study, we provide an analysis of the strain energy [34] of the generated233

poses. Force field relaxation before docking is a common post-processing step of many generative234

SBDD pipelines, masking some potential issues with the generated geometries less clear. This allows235

us to evaluate the generated molecules for undesirable properties like unrealistic bond distance or236

impossible geometries in rings.237

Figure 5 displays the cumulative density function (CDF) of strain energy for the generated molecules,238

with the CrossDocked dataset serving as a baseline (Note: the x-axis is on a logarithmic scale). We239

focus on median values in our discussion since they are more representative in this context due to the240

presence of extreme outliers, with mean values ranging from approximately 104 to 1015 kcal/mol.241

None of the generative methods yields molecules exhibiting strain energy close to that of the test set,242

which has a median strain energy of 102.5 kcal/mol.243

Discussion Intriguingly, both of the diffusion-based methodologies (DiffSBDD and TargetDiff)244

perform similarly poorly, reporting median values of 1243.1 and 1241.7 kcal/mol, respectively. This245

could suggest issues with the currently used noised schedules [47] of these methods for ultra-precise246

atom position refinement (discussed in Section C). 3DSBDD performs to the same order of magnitude,247

with a median strain energy of 592.2 kcal/mol, suggesting that placing atoms into a discretized voxel248

space [15], while good for avoiding clashes, has a detrimental impact on the strain energy.249

FLAG performs the best by far here with a median of 101.1 kcal/mol. We believe this due to most250

of the bond angles and distances already consisting of idealised geometries when the fragments are251
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initialized for incorporation into the molecule. Out of the other methods, Pocket2Mol performs252

the best in terms of strain energy, with a median of 194.9 kcal/mol. The method provides perhaps253

the finest-grained control over exact coordinates generated, by first choosing a focal atom and then254

generating a new atom coordinate directly using an equivariant neural network [13, 16], which may255

allow for more precise placement. LiGAN exhibits the highest strain energy, with a median value of256

18693.8 kcal/mol, indicating the poorest performance in this context.257

Limitations The exceedingly high strain energy values observed in this scenario should be ap-258

proached with considerable prudence. For comparison, the combustion of TNT releases approximately259

815 kcal/mol. [48]. This data is not to be perceived as absolute, but rather illustrative of the extent to260

which our generated geometries deviate markedly from the standard distribution for the force field.261

This further underscores the existing issues. It is also conceivable that these poses might not even be262

initialized within more sophisticated, high-fidelity force fields [49].263

5 Conclusion264

In conclusion, this work presents a comprehensive exploration of structure-based drug design (SBDD)265

methodologies with deep generative models. We advocate for the need to consider both the quality266

of the generated molecules and the quality of the binding poses in these models, calling for an267

expanded evaluation of SBDD. The application of deep generative models in SBDD holds promise for268

developing innovative drug-like molecules. However, for SBDD approaches to realise that potential,269

we must establish a rigorous evaluation regimen of both the generated molecules and their interaction270

with the target – as proposed in this paper. Our research provides a solid evaluation regimen for future271

advancements in this field and we hope that it stimulates further development towards more efficient272

drug discovery processes.273
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A CrossDocked Dataset454
R2Q3455

The CrossDocked dataset is a standard dataset used in the field of generative modelling for structure-456

based drug design [37]; since the models benchmarked here were trained on this dataset, it is the457

benchmarking dataset of choice. It was originally created by clustering PDB structures by "pocket458

similarity’ via Pocketome [50], i.e. grouping structures with similar ligand binding sites together.459

To expand the dataset beyond this initial data, all ligands with a molecular weight < 1000 Da that460

were associated with a given pocked were docked into each receptor assigned to that pocket via461

the docking tool smina [36]. This cross-docking process results in the basis dataset CrossDocked462

2020 [37], which contains 2,922 pockets, 18,450 complexes and 13,839 ligands, together comprising463

around 22.5 million poses (i.e. protein-ligand structures).464

Most generative models are however not trained on this raw dataset, but on a filtered version of it,465

following the procedure of the Pocket2Mol model [16]. As a quality control, data points whose466

binding pose RMSD is greater than 1 were filtered out. This leads to a filtered dataset with 184,057467

data points. The mmseq2 program [51] was used to cluster data at 30% identity, and training and test468

sets were created by randomly drawing 100,000 protein-ligand pairs for training and 100 proteins469

from the remaining clusters for testing.470

The 100 proteins comprising the test set are on average around 320 residues long, with the biggest471

protein having a length of 752 residues.472

B Extended Implementation473

474

B.1 Methods Implementation475

All generative methods accessed were trained using the same dataset and splits as proposed in476

Peng et al. [16]. Docking protocols were done using the SMINA settings decribed in the original477

CrossDocked paper [37].478

479

B.2 Procedure of model reproduction480

For generated poses, we sourced molecules from Schneuing et al. [18] for DiffSBDD, and Guan et al.481

[17] for CrossDocked, TargetDiff, Pocket2Mol, 3DSBDD and LiGAN (where they provide generated482

poses but we additionally perform our own redocking).483

For FLAG [22], no weights were provided so we retrained the model as described in Zhang et al.484

[22] using the code and config file available at github.com/zaixizhang/FLAG. When sampling,485

we found that generation was attempted 100 times per target and then any molecules with fewer than486

8 atoms were discarded. This ended up encompassing the majority of molecules, resulting in small487

test sizes, so we implemented a while loop to sample 100 molecules whilst keeping faithful to the488

filtering used in the codebase. Having modified the code to work on GPU, sampling 100 targets took489

about 1-2 minutes per target on a single A100 GPU.490

For DecompDiff [27], we use the official implementation with the published weights available at491

github.com/bytedance/DecompDiff. We sampled 100 samples for each of the 100 targets using492

the sample_diffusion_drift.py script in ref_prior mode. With the provided code, sampling493

100 targets took about 20-30 minutes per target on a single A100 GPU.494

C Recommendations for future work495

Exploring reduced-noise sampling strategies Interestingly, both diffusion-based works (DiffS-496

BDD and TargetDiff) performed similarly in terms of strain energy (see Section 4.5). We hypothesize497

this may be due to the injection of random noise into the coordinate features at all but the last step of498

stochastic gradient Langevin dynamics samplings [52], making it challenging to construct precise499

bond angles etc. Here, inspiration could be taken from protein design. For example, Chroma develops500

a low-temperature sampling regime to reduce the effect of noise [53], FrameDiff effectively scales501
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down injected noise [54], both resulting in a substantial increase in sample quality with an acceptable502

decrease in sample diversity.503

Heavily penalise steric clashes during training All evaluated methods frequently create steric504

clashes, resulting in physically unrealizable samples. We suggest that mitigating steric clashes is505

key for the next generation of SBDD models. This could be done via extra loss terms, for example,506

by including a distogram loss as in AlphaFold2 [45] or the steric clash loss in LiGAN [14] and507

DecompDiff [27] (note that later method does note explicitly measure clashes). A similar loss-based508

approach has been effective in mitigating chain-breaks diffusion models for protein backbone design509

[54].510

Consider representing hydrogens Virtually all work in ML for structural biology chooses to511

not explicitly represent hydrogen atoms [45, 16, 15, 54, 18, 17], under the assumption that they512

can be implicitly learned and reasoned over with deep neural networks. However, our analysis of513

hydrogen bond networks within generated molecules found that generative methods struggle to handle514

the precise geometries required to make a hydrogen bond [40] (even when redocked). Despite the515

increased computational cost, we therefore recommend that future work explores their inclusion.516

D Additional Figures517

D.1 Interactions analysis518

We include the comparisons between generative method against baselines for both Van der Waals519

contacts and hydrophobic interactions, both for generated redocked poses in Figure 6.520

Figure 6: Extended analysis of the interaction profiles of the generated molecules for the different
methods. While the focus in the main text was on hydrogen bonds, the results in this figure include
Van der Waals Contacts and hydrophobic interactions, reported for both the generated as well as the
redocked pose.

D.2 Redocking and clashes analysis521

In Figure 7, we provide the per target redocking RMSDs per method. Figure 8 and 9 show the number522

of steric clashes per target for the generated and redocked poses respectively.523
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Figure 7: Redocking RMSD per method per target for CrossDocked test set. Order is determined
arbitrarily by median score per target for DiffSBDD.
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Figure 8: Steric clashes per method per target for generated poses in the CrossDocked test set. Order
is determined arbitrarily by median score per target for DiffSBDD.
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Figure 9: Steric clashes per method per target for redocked poses in the CrossDocked test set. Order
is determined arbitrarily by median score per target for DiffSBDD.
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