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Abstract

We investigate a self-supervised learning technique from the Simple Siamese (Sim-1

Siam) Representation Learning framework on 2D molecule graphs. SimSiam does2

not require negative samples during training, making it 1) more computationally ef-3

ficient and 2) less vulnerable to faulty negatives compared with contrastive learning.4

Leveraging unlabeled molecular data, we demonstrate that our approach, MolSiam,5

effectively captures the underlying features of molecules and shows that those with6

similar properties tend to cluster in UMAP analysis. By fine-tuning pre-trained7

MolSiam models, we observe performance improvements across four downstream8

therapeutic property prediction tasks without training with negative pairs.9

1 Introduction10

Machine learning (ML) is a rapidly growing field that has significantly contributed to molecular11

design for drug discovery [1, 2], which is traditionally a complex and time-consuming process.12

Studies have shown that supervised machine learning algorithms can predict drug efficacy, toxicity,13

and side effects [3], providing a promising approach to reduce the number of failed drug candidates14

and lower the cost of development. Deep learning, particularly graph neural networks (GNN), has15

played a significant role in designing and characterizing small molecule therapeutics [4].16

Despite the success of supervised learning in molecular property prediction, obtaining labeled17

experimental data can be costly and time-consuming. Given the scarcity of labeled data (typically18

102 − 104 examples per task), supervised learning methods usually face a significant obstacle to19

learning a generalized representation of the vast chemical landscape [5, 6].20

Numerous approaches have been suggested to learn effective molecular representations. In [7, 8], the21

authors show pre-training on the graph is beneficial for downstream molecular property prediction.22

[9] reviews the variational autoencoder (VAE) as a tool for representation learning on SMILES strings.23

[10, 11] utilize SMILES strings with BERT-like [12] pretraining to learn molecular representations.24

[13] introduce ChemGPT for joint representation learning and generation for molecules using25

SELFIES. [14] propose a novel geometry-enhanced molecular representation learning method (GEM).26

In recent years, self-supervised learning (SSL) with pairwise augmentation has also shown promising27

results on computer vision tasks [15, 16, 17, 18], as well as for pre-training with applications to graph-28

structured data [19, 20]. Among them, contrastive learning (CLR) has been explored [19] for learning29

molecular representations and pre-training for downstream tasks, while other SSL frameworks like30

Bootstrap Your Own Latent (BYOL) [16] [17] [18] for molecules drug discovery. [21, 22, 23]31

use contrastive learning on protein sequences and 3D structures. [24] used Barlow twins [25] and32

SimSiam for material property prediction. In this study, we investigate a self-supervised learning33

technique from the Simple Siamese (SimSiam) Representation Learning framework on molecular34
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Figure 1: The MolSiam pipeline: we utilize Siamese GNN encoders for pre-training. One of the
representations z from the encoder is further passed into the predictor MLP to get the predictor
representation p. The loss function is the similarity between p and z while z is detached, which stops
the gradient.

2D graphs. We demonstrate that molecular ML models pre-trained with SimSiam, herein called35

MolSiam, can improve downstream performance on a number of molecular property prediction tasks36

in drug discovery.37

2 Related Work38

2.1 Contrastive Learning and MolCLR39

SSL is a widely-adopted approach for model pre-training [15, 17, 20, 18, 16]. A recent SSL approach,40

Molecular Contrastive Learning of Representations (MolCLR), was demonstrated to be effective for41

improving the performance of 2D GNNs in QM property prediction [19]. Common augmentation42

tasks in graph processing involve techniques such as subgraph masking and randomly removing43

nodes or edges. Graphs augmented from a shared source are considered positive pairs, whereas those44

generated from distinct sources are regarded as negative pairs. The objective of pre-training is to45

maximize the similarity between positive pairs and minimize the similarity between negative pairs in46

the embedding space, known as the normalized temperature-scaled cross entropy loss (NT-Xent loss)47

[15].48

The contrastive objective may erroneously treat identical or similar augmented graphs from different49

examples in a dataset as negative pairs. This is particularly relevant in small-molecule design, where50

new designs may only be slight variations on a common scaffold. This raises the concern that51

embeddings of very similar graphs may be separated, which goes against the spirit of contrastive52

learning. For example, [26] found faulty negatives could hurt the performance of downstream tasks53

in the MolCLR setting and hence incorporate cheminformatics similarities between molecule pairs.54

SimCLR, SwAV[17], BYOL [16], and SimSiam are all self-supervised learning algorithms. SimCLR55

uses contrastive learning techniques to maximize the agreement between augmented views of the56

same sample and minimize the similarity between negative pairs. BYOL removes the necessity of57

negative pairs but requires large batch sizes (e.g. 4096) to have a significant effect.58

2.2 SimSiam (positive-only non-CLR)59

SimSiam provides an elegant way to perform self-supervised learning with only positive pairs and60

a smaller batch size (e.g., 256), making it an adequate framework for pre-training for most of the61

use cases without access to substantial computational resources. SimSiam is an easily implemented62

non-CLR mechanism widely used and studied in computer vision [18]. In both the CLR and SimSiam63

methods, samples generated from the same data inputs are considered positive pairs, and the model64

is trained to increase the cosine similarity between their embeddings. However, in SimSiam, no65
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negative pairs are introduced. A major question of non-CLR methods like SimSiam is how to avoid66

collapse in representation space without negative samples.67

To prevent the representations from collapsing into identical vectors while minimizing the loss,68

the authors in [18] claim that the use of a stopgrad operation with a Projector MLP is crucial69

(see Section 4). Recent works have demonstrated the potential of using SimSiam on molecular70

graphs and crystal structures [27, 24, 28]. [29] demonstrate that incorporating SimSiam networks71

on augmented views of 3D molecular structures increases manifold smoothness during supervised72

learning. However, the protocol requires 3D point cloud structures, which are not easy to obtain for73

large unlabeled molecular datasets for representation learning. Therefore, in this work, we study the74

Simple Siamese (SimSiam) Representation Learning framework on molecular 2D graphs.75

3 Data76

3.1 Pre-training Dataset77

For MolSiam pre-training, we utilized approximately 10 million unique SMILES of unlabeled78

molecules obtained from PubChem [30, 31]. The molecule graphs were constructed using RDKit79

[32]. Each node in the molecule graph represents an atom, while each edge represents a chemical80

bond. The pre-training dataset was randomly divided into a 95:5 ratio for training and validation sets.81

3.2 Downstream Dataset82

To validate the effectiveness of MolSiam, a handful of datasets were selected from MoleculeNet83

[33] and the Therapeutic Data Commons (TDC) [34] for evaluation. Below is a brief overview84

of each dataset, and we encourage the reader to visit the MoleculeNet1 and TDC2 websites and85

original references for more information. All the downstream tasks are binary classification, the loss86

function for fine-tuning the GNN encoders is binary cross entropy (BCE), and the evaluation metric87

is roc_auc_score.88

3.2.1 Pgp89

The Pgp dataset consists of 1,212 molecules with affinity labels for binding to P-glycoprotein90

receptors [35].91

3.2.2 BACE92

The BACE dataset provides quantitative IC50 and qualitative (binary label) binding results for a set of93

inhibitors of human beta-secretase 1 (BACE-1). All data are experimental values reported in scientific94

literature over the past decade, some with detailed crystal structures available. A collection of 152295

compounds is provided, along with the regression labels of IC50.96

3.2.3 HIV97

The AIDS Antiviral Screen dataset (HIV) is a dataset of screens over tens of thousands of compounds98

for evidence of anti-HIV activity [36]. The available screen results are chemical graph-structured99

data of these various compounds with experimentally measured abilities to inhibit HIV replication.100

3.2.4 Bioavailability101

The Bioavailability dataset contains 640 drugs in SMILES representation. The dataset records the102

rate and extent to which the active ingredient or active moiety is absorbed from a drug product103

and becomes available at the site of action. The task is to predict bioavailability given a drug104

representation.105

1https://moleculenet.org/
2https://tdcommons.ai/single_pred_tasks/overview/
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4 Approach and Methods106

There exist several methods for augmentation on graph data [37, 38]. Following MolCLR[19], we107

adopt a mixture of three augmentation strategies: 1) node removal, 2) bond (edge) removal, and 3)108

subgraph removal. We augment each input with the above transformations to create pairs, which are109

passed to the GNN encoder for representation learning (vide infra).110

4.1 GIN encoder111

We used Graph Isomorphism Network (GIN) as our encoder network [39, 19]. GINs aim to solve the112

graph isomorphism problem, which is the task of determining whether two graphs are structurally113

equivalent. To do this, GINs define a neural network architecture that maps nodes of a graph to a fixed-114

length vector representation, and the GIN is trained such that isomorphic graphs are mapped to the115

same representation. This allows the GIN to be used for tasks such as graph classification and graph116

similarity computation. Unlike other GNN models, which typically use graph convolutional layers to117

propagate information, GINs use multi-layer perceptrons (MLPs) to update the node representations.118

The MLPs in a GIN are designed to be permutation-invariant, meaning that they produce the same119

output regardless of the order of the input elements.120

Our GIN has five hidden layers, each of which are followed by batch normalization (BN) and ReLU121

activation. Our hidden and embedding layers are of dimension 512 and 300, respectively, and mean122

pooling is applied at the output for the GIN encoder.123

4.2 Predictor124

Our predictor is a two-layer MLP with bottleneck structure that was shown to be crucial to prevent125

representation collapse [18]. In this work, we kept the format of the predictor the same as in SimSiam.126

The prediction MLP (h) has BN and ReLu applied to its hidden layers and not to the output layer.127

The dimension of h’s input and output (z and p) is 512, and h’s hidden layer’s dimension is 256,128

making h a bottleneck structure.129

4.3 Loss function and stop gradient130

For pre-training MolSiam, the loss for optimization combines symmetrized loss setting on representa-131

tion z and p. The term z is the direct output of the GNN encoder, and p is the output of h. We applied132

two augmentations on the same molecule graph to obtain (z1, z2) and (p1, p2). The loss function is133

described as follows:134

L =
1

2
D(p1, z2) +

1

2
D(p2, z1) , (1)

D(p, z) = −
[

p

∥p∥2
· z

∥z∥2

]
. (2)

We adopt the stopgrad operation on z. We use Adam as our pre-training optimizer. The batch size =135

512 and we train for 100 epochs with initial learning rate of 0.005 and weight decay of 10−5.136

5 Results and Discussion137

5.1 Representation Learning138

To understand the molecular representations of MolSiam, learned through self-supervised learning,139

we first obtain the 512-dimensional molecular embeddings for the molecules of interest from the140

GIN-encoder. Then we use the UMAP algorithm [40] to reduce the dimensionality of the embeddings141

to a lower-dimensional space. Figure 3 shows the UMAP on the QM8 dataset[33], which has quantum142

energy labels. We notice that lower energy compounds (second-order approximate coupled-cluster,143

CC2, indicated by colorbar) tend to cluster together.144
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Figure 2: Training loss of the MolSiam during the pre-training stage. Without stop-gradient as the
training starts, the loss function asymptomatically approaches −1 as soon as the training starts.

Figure 3: Visualization of molecular representations learned by MolSiam via umap with QM8 dataset.

5.2 Downstream task145

As shown in Table 1, we found that pre-training with MolSiam improved performance in three of146

the four downstream tasks, with the strongest improvement observed for Pgp. We also study the147

difference in training loss function 1 similar to the ablation study done in [18] to understand the148

impact of training with/without stopgrad. As shown in figure 2, without the stop-gradient, the loss149

collapses immediately.150

6 Conclusion and Outlook151

We demonstrate MolSiam as an efficient and simple way of pre-training representation learners152

for downstream molecular property prediction. For future work, there are many directions worth153

exploring, including 1) augmentation strategy, 2) encoder architecture, 3) effect of the bottleneck in154

prediction MLP, 4) effect of batch size, 5) effect of batch normalization on MLP heads, and 6) effect155

Table 1: Downstream task RoC-AUC comparison of pre-trained MolSiam vs supervised-only models

Target MolSiam Supervised-only

BACE 0.8523 ± 0.013 0.8427 ± 0.019
HIV 0.7699 ± 0.039 0.7731 ± 0.037
Pgp 0.7354 ± 0.011 0.694 ± 0.026
Bioavailability 0.6669 ± 0.025 0.6595 ± 0.022
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of (a)symmetrized loss hyper parameter. In addition, we plan to compare our approach with different156

baselines and more downstream tasks in future work.157

In conclusion, we present MolSiam as a valuable approach to learning on molecular graphs. It158

benefits from vast amounts of unannotated chemical data, giving downstream models the potential159

to generalize to new chemical spaces and making it an attractive option for many applications in160

chemistry and drug discovery. With the increasing availability of large molecular datasets, self-161

supervised learning methods, including MolSiam, are likely to play a crucial role in advancing162

molecular representation learning and property prediction.163
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