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Abstract

Transcriptomic foundation models (TFMs) promise to act as virtual cell models,
but it remains unclear whether they have internalized the biological rules of tran-
scriptomic space. To address this question, we propose assessing the quality of
pretrained TFMs by probing the coherence of their internal world model using
the pretraining loss on synthetic samples. Our approach combines two comple-
mentary tests. First, as a stress test of plausibility, we compare pretraining loss on
shuffled cells compared to real samples. Second, to probe the coherence of the
internal world model, we evaluate interpolated samples both within and between
cell types, quantifying whether the model identifies coherent clusters. Across
multiple datasets, TFMs tend to distinguish real and shuffled cells, with entropy
of expression value strongly predicting the loss gap. Interpolations reveal “loss
barriers” between distant cell types while similar cell types tend not to have barriers.
Interestingly, much of the structure of cell embeddings persists despite the shuffling
of the values of expressed genes. This approach demonstrates that quantification
of an internal world model is possible, even in a “zero resource” setting, without
labeled data. We argue that this is a critical step toward identifying whether TFMs
can truly function as virtual cell models, rather than stochastic parrots.

1 Introduction

Transcriptomic foundation models (TFMs), large scale neural networks pretrained on massive single-
cell gene expressmn datasets, are rapldly emerging as powerful tools in single-cell biology (

, , ). By drawing an analogy between sentences in
natural language and cells in transcrlptomlc space, TFMs leverage transformer architectures to capture
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Hypothesis: pretraining loss is differential for
real versus fabricated samples
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Figure 1: Our hypothesis. A transcriptomic foundation model pretrained on real data should assign lower
pretraining error to genuine cell states than to fabricated ones. We compare the pretraining loss of three inputs:
original data, Digina; shuffled data, Dghused, where gene identities are permuted; and interpolated data, Dinterp,
where synthetic cells are generated between types. Illustration shows our expectation of pretraining loss (z-axis)
across projected expression space (xy-plane).

complex gene-gene dependencies across millions of cells. A notable example is scGPT, which learns
to generate and embed cellular gene expression profiles in ways that align with biological structure
( , ). These models have already been applied to diverse downstream tasks, including
cell type annotation, batch integration, perturbation-response prediction, and gene network inference
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However, despite their promise, evaluating how well TFMs actually understand cellular biology
remains a challenge ( R ). Current evaluations fall into two main categories. First,

zero-shot evaluations typically examine the quality of model embeddings, for example in terms of
cell-type separability or batch mixing scores such as AvgBio and AvgBatch. While scGPT and
related models often produce embeddings consistent with known cell types, simple baselines using
highly variable genes can achieve comparable or even superior results, raising questions about what
the model truly contributes ( s ). Moreover, naive zero-shot evaluation of the
pretraining loss has shown poor calibration, raising further questions about whether the model has
learned non-trivial patterns. Second, task-specific fine-tuning assesses TFMs as feature extractors
or initializations for downstream models. Here too, results are mixed: in some cases fine- tuned
TFMs improve prediction, but in others, trivial heuristics outperform them (

). For example, when predicting double perturbation effects, a s1mp1e
additive rule (summmg individual perturbation effects and subtracting the control) surpassed fine-
tuned scGPT ( , ). Additionally, TFM evaluation currently lacks “zero
resource” methods, as each of these evaluations requires labeled sets of samples. It therefore remains
unclear the extent to which TFMs are learning a coherent world model rather than behaving like a
stochastic parrot ( s ). We define a “world model” for scRNA as an internal loss
landscape that captures the statistical and relational organization of single-cell biology, assigning
lower loss to biologically plausible profiles and higher loss between more distinct cell types/states.

For language models, the debate about whether the LLMs produce a true internal world model or
function as stochastic parrots has raged for several years. Despite the extraordinary leap in abilities
across domains that these models show, the absence of a verifiable internal world model makes the
question of whether they are truly reasoning unresolved ( , ). Most studies exploring
this problem for LLMs make use of the fact that the input and output text can be evaluated by humans
for its logical consistency, and signs of hallucinations can be flagged by human inspection. For TFMs
there is no such option, as the raw scRNA samples are not directly legible.

In this work, we introduce a set of tests to probe the coherence of the internal model of a TFM. We
expect a TFM with a coherent world model (Fig. 1) :

1. Lower pretraining loss for a genuine sample compared to its randomly shuffled counterpart.



2. Lower pretraining loss for interpolated samples within a cell type than between cell types.

The first condition represents sample-level coherence, whereas the second condition requires a more
global coherence and also requires that the cell type labels in the test data be assigned correctly.

Our contribution is to define the above TFM world model evaluation, and to deploy it on scGPT

( ) with six widely used benchmarking datasets Table 1. Though focus on scGPT for
concreteness in this study, because the method does not make any specific assumptions about the
details of the TFM, the same approach can be applied to any model. We find that there is evidence for
the emergence of a coherent world model but it is far from universal across the samples considered.
Specifically, many samples are nearly indistinguishable from random and in general only significantly
different cell types are accompanied by a detectable loss barrier. Furthermore, we find that for
embedding quality, as long as the gene and expression levels are shuffled among expressed genes
only, much of the embedding structure is preserved.

Through these analyses, we go beyond dataset-level benchmarks and provide a direct, unsupervised
measure of how well a foundation model has captured the statistical and biological regularities of
single-cell data. Our approach complements embedding-based evaluations by focusing on the model’s
own pretraining objective, offering a “zero-resource” diagnostic of what the model truly knows.

2 Methods and Results

2.1 Shuffled profiles.

By permuting gene identities we generate inputs that preserve some statistics (e.g., the set of expressed
genes) while disrupting others (e.g., the mapping between values and gene labels). Our expectation
parallels the expectation of a language model to assign lower perplexity (or higher masked-token
accuracy) to coherent sentences than to word-shuffled sequences.

We first examine how the shuffling of gene identities affects the pretraining loss and the resulting cell
embeddings (Fig. 2). We evaluated scGPT pretrained on human gene expression, focusing on two
scenarios: (1) shuffling all gene identities (Fig. 2.A) and (2) shuffling only the identities of expressed
genes (Fig. 2.D). We consider the loss:

E(.Z‘) = EGEP(J?) + ,CGEpc(JJ),

where z is the gene expression profile, Lggp is the mean squared error (MSE) of masked expression
values predicted from the transformer stack, and Lggpc is the MSE of masked values predicted from

the cell embeddings and gene representations (see , and Appendix A.2). Evaluation
datasets were drawn from single batches of the scEval benchmark datasets( R ) (see
Appendix A.3).

Across both shuffling strategies, pretraining loss increased for shuffled profiles relative to their
original counterparts (Fig. 2.B,E). However, shuffled cells did not always incur higher error than the
real profiles from which they were derived, indicating that the loss function alone is not a perfect
discriminator.

For language models, we observe that shorter samples have similar loss whether or not the words are
shuffled Fig. 3. scRNA samples do not vary by their length, but they vary widely in their information
content. In contrast to text, it is possible in principle to have a sample where all genes were measured
in the same quantity. For such samples, shuffling is irrelevant and success at masked value prediction
is not informative. To assess the impact of this phenomenon in our measurement, we measured the
sample entropy as:

- Zp(w = k)logp(z = k),

where p(z = k) is the frequency of expression value k. Whlle expression entropy has been linked to
biological properties such as pluripotency ( ,

; , ), here we focus on its ability to quantlfy the amount of learnable 1nf0rmat10n
in the gene expression profile. Unlike natural language, where the tokens of the input are diverse,
scRNA-seq profiles resemble negative binomial distributions dominated by low counts (

, ). Low-entropy cells therefore provide limited signal, making trivial predictions sufficient



to achieve low loss during training. The shuffling procedure is also expected to have a reduced effect
in low-entropy cells. To quantify this, we compared shuffle-to-original loss gaps against entropy
(Fig. 4). While PBMC cells showed a strong correlation (r = 0.45), others such as lung cells showed
almost none (r = 0.05), suggesting that the shuffle gap captures more than just raw information
content.
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Figure 2: Shuffling expressed genes disrupts pretraining loss but variably affects embeddings. A,D,
examples of original (top) and shuffled (bottom) inputs for all genes (A) and expressed genes only (D). B,E,
distribution of pretraining loss gaps (median of shuffled minus median of original over 10 repeats). Dashed black
lines mark quartiles, red dashed line marks zero. Median gaps are significantly positive (Bonferroni-corrected
Wilcoxon test). C,F, separability of cell embeddings, measured as F1 scores of logistic regressors trained on
embeddings. Error bars are over 10 repetitions of the analysis. Original (black), shuffled (purple), and stratified
baseline (coral dash) are shown. All results are from single batches of scEval datasets ( S ).

Together, these findings demonstrate that with an appropriate setup, pretraining loss can distinguish
real from permuted data. While embeddings are commonly used to evaluate TFMs, the loss function
itself provides a lightweight probe of model fidelity. Furthermore, it is “zero-resource” in that it does
not require cells to be labeled and it is usable on the sample-level. This perspective also points to
practical applications: cells with unusually high entropy but low shuffle-to-original loss gap may
reflect artifacts or out-of-distribution states and warrant reduced confidence, analogous to quality
control in experimental workflows ( , ).
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Figure 3: Comparison of genuine and shuffled loss in a pretrained text model. Using the “bert-base-uncased”
model and “Salesforce/wikitext” corpus, we examined the measured pretraining loss for random paragraphs of
various lengths compared with word-shuffled samples. We see that for shorter samples, the pretrained loss is not
significantly different, but for longer samples the difference is significant and persistent. Results shown for 50
samples, shuffled 12 times and masked 10 times at a ratio of 0.3, with a max number of 128 tokens input for all
samples.
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Figure 4: Samples with higher entropy tend to have a larger difference between all-gene-shuffled and
original loss. Sample distribution by the difference in pretraining loss (median of shuffled minus median of
original over 10 repeats) as a function of sample entropy. Strength of correlation varies across datasets (Pearson r
reported in captions). Shown here for all-gene shuffling; expressed-gene shuffling gives similar results (Appendix
Fig. 6).

The cell-level embeddings produced by TFMs have been shown to emphasize biological similarity
and reduce batch effects and represent one of the most promising uses of this methodology

( ). However, model-free embeddings based on dimensional reduction through limiting to highly
variable genes and/or standard methods such as PCA, UMAP or tSNE also produce good cell-level
embeddings, again raising questions as to whether the cell representation represents an internal world
model or encodes basic correlations. We thus explore the effect of shuffling on the quality of the
cell-level embeddings. We do so by examining separability of the embedding vectors into ground
truth cell types before and after shuffling. Separability of cell types was assessed by training logistic
regression classifiers on embeddings and reporting class-weighted F1 scores, relative to both the
original embeddings and a stratified baseline (Fig. 2.C,F). Results differed markedly by strategy:
shuffling all gene identities severely disrupted embedding structure, reducing separability close to
baseline levels, while shuffling only expressed gene identities largely preserved separability. This
reflects similar findings on the significance of binary expression representations ? and models such
as UCE ( ) which are trained with a strictly binary objective. Further inspection of
the immune dataset (Appendix Fig. 7) confirmed that major types such as CD4* T cells and CD14™
monocytes remain separable when only expressed genes are shuffled, but not when all genes are
shuffled. This suggests that in some cases cell representations of scGPT primarily rely on the set of
expressed genes, analogous to marker genes, rather than the expression values.

In general, we find that scGPT assigns higher loss to shuffled than to original cells, with the magnitude
of this gap partially explained by the sample entropy (the entropy of a cell’s gene expression values).
Low-entropy cells provide little signal, making them harder to learn and to distinguish from their
shuffled counterparts. Moreover, comparing loss and embeddings across shuffle strategies reveals
a distinction in what the model encodes: pretraining loss, which encapsulates the reconstruction of
gene expression values, is sensitive to expression values, while cell embeddings are strongly affected
by the set of expressed genes, not always sensitive to their precise values.

2.2 Interpolated profiles.

We also generate synthetic cells by linearly combining expression profiles from different cell types.
Here we ask whether scGPT identifies interpolations between clusters as implausible, while treating
within-cluster interpolations as realistic. To quantify this, we approximate the convexity of the
pretraining loss along interpolation paths: convex increases in loss indicate “barriers” between
states. Whereas smooth interpolation between samples is not defined for text, transcriptomic space is
continuous, making interpolation a natural probe of the learned manifold. We find that in general,
pretraining loss is stable and homogeneous within clusters, but rises across distinct cell-type groups,
revealing significant learned barriers in expression space.

We do this by interpolating expression values between distinct cell types and assessing the pretrained
loss on the interpolated samples (Fig. 5). Biologically, not all combinations of expression values are
plausible. If a TFM has learned the underlying distribution, it should assign lower loss to samples
within clusters (corresponding to empirically observed regions of transcriptomic space), and higher
loss to interpolations between unrelated clusters. This represents a distinct way of evaluating the
pretrained model’s knowledge of cell-types, that does not depend on embeddings or clustering metrics.
Unlike the shuffling method above, evaluating the pretraining loss within and between cell-types is
not “zero-resource”—it relies on accurate cell-type labels.
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Figure 5: Interpolations reveal barriers between clusters. A, schematic of interpolated samples between two
cell types, shown in PCA space with blended colors according to interpolation factor «.. B, average log-ratio of
interpolated loss relative to baseline. Values near zero (main diagonal) reflect within-cluster consistency. Positive
values across clusters indicate convex loss profiles, i.e. barriers. Significance is determined by Bonferroni-
corrected t-tests. For visibility, the 10 most common cell type clusters are shown for each dataset.

For each pair of cell types cty, cty, we randomly sample pairs of cells x; € ct; and x5 € cty and draw
a ~ U(0, 1) to compute interpolated profiles:

¥ =ar; + (1 - a)zj,

producing samples along the chord connecting the pair of cells across cell types in expression
space (Fig. 5.A). Repeating this across many pairs and « values produces a dense set of synthetic
observations upon which we evaluate the pretraining loss L(z'), in comparison to a baseline loss
defined as the weighted average of the two cell-type losses:

Lbaseline(xl) =« Lctl + (1 — a) . Lctz-

The log-ratio

L(2')
Lpaseline (-'17/ )
quantifies whether interpolations incur higher-than-expected loss.

r(z') = log

When interpolating between cell-type clusters, we frequently find positive log-ratios, reflecting the
existence of a “loss-barrier”, an ostensibly forbidden zone of transcriptomic space separating the cell
types(Fig. 5.B). However, these barriers were not always observed. For example, in the pancreas
dataset (Tran et al., 2020), we observed strong barriers when interpolating between an endocrine
(alpha, beta, delta, gamma) and non-endocrine (acinar, endothelial, ductal, stellate) cell type, but did
not find barriers when interpolating between different endocrine or non-endocrine cell-types. This is a
biological coherent result, reflecting the fact that transcriptomically the endocrine and non-endocrine
cells are very different whereas the different endocrine cells are very similar.

We execute the same interpolation within cell type clusters. The interpolated cells within a cluster
are expected to have loss similar to the real cells within the cluster. In general, we find log-ratios
were near zero, indicating stability of the loss function. It is possible that significant differences in
loss between interpolated and real cells would arise within a set of samples of a single cell-type.
This would reflect a misalignment of the cell-type label and the pretrained model, arising either
from a single cell-type label being applied to a hetereogeneous population or from limitations of the
pretrained model. In fact, the presence of loss-barriers within a single population could be utilized to
identify subtypes without relying on observed sample density, the feature underlying unsupervised
clustering methods. In our test datasets Table 1, we did not observe statistically significant loss
heterogeneity within cell-type clusters.

3 Discussion

Our work introduces an unsupervised evaluation framework for TFMs, based on comparing pre-
training loss across real and synthetic samples. Using scGPT as a case study, we showed that the



pretraining loss reliably distinguishes genuine gene expression profiles from their shuffled coun-
terparts, while intermediate embeddings remain robust when only expression identities rather than
values are disrupted. At the regional level, interpolation analysis revealed loss barriers between cell
type clusters, consistent with biologically implausible transitions, while maintaining homogeneity
within clusters. Together, these results highlight pretraining loss as an interpretable and zero-resource
diagnostic of model familiarity and biological plausibility. And because the method makes use only
of synthetic data and pretraining loss evaluation, with no assumptions about the details of the TFM, it
can be applied across models, consistently.

Our approach touches on broader concepts at the intersection of biology and machine learning. Do
TFMs act as world models of gene regulation, or merely stochastic parrots that recapitulate simple
correlations? We find that for this TFM (scGPT) and these datasets Table 1 the shuffled sample
loss tends be higher than the genuine sample though this is by no means universal-many shuffled
samples have lower loss than the genuine samples, especially in the lower entropy regions. This is
in contrast to text models, which show a more consistent gap in loss between shuffled and genuine
samples Fig. 3. We speculate that this may be due to the “grammar” of scRNA being inherently more
flexible than language, due to experimental noise, insufficient training or architectural mismatch.
With interpolations, we find loss-barriers in some places but not in others. We hypothesize that
a well-trained model would roughly follow the cell-type ontology, with lower barriers between
ontologically similar cells and higher barriers between ontologically distant cells. The possibility that
a cell-type passes through another cell-types low-loss region on the way to a third cell type must also
be considered.

In practical terms, the methods illustrated above have several potential applications. They can define
an “autocorrect” for transcriptomic inputs, identifying likely mistaken samples and integrated into
quality-control pipelines. Identification of loss barriers could enhance the viability of in-silico gene
perturbation studies ( ) by identifying the perturbations that are likely to have
an effect by examining whether or not they reach high loss regions (implying the need for the other
genes to adapt to the perturbation). More ambitiously, incorporating explicit training objectives that
enforce smoothness (e.g. ( , )) or structure in the loss landscape may enable TFMs
to better capture the manifold geometry of gene expression space, thereby facilitating downstream
applications in generative biology. These directions point toward TFMs not only for improving on
known tasks, but evolving into genuine virtual cell models.



A Appendix

A.1 Formulation of our evaluation

Given a pretrained model M and a dataset Dyiginal = (z1,...,2N), Where z; € Ri represents the
gene expression profile for sample ¢, we evaluate the model’s knowledge of Dyiginal by comparing its
pretraining loss, L : R‘i — IR, on three types of input: 1. the original data Dqgiginal, 2. shuffled data
Dypufnied, and 3. interpolated data Diyerp.

A.1.1 Shuffle analysis

To probe sensitivity to biologically implausible inputs, we generate shuffled datasets Dgpufaed by
randomly permuting gene identities (excluding padded indices and special tokens). We consider two
settings: shuffling all gene identities or shuffling only the identities of expressed genes.

For each original cell z € Diginal, We create a shuffled counterpart 2" € Dgputied and compare their
pretraining losses. Because both the shuffled identities and the random masking of values introduce
variability, we repeat this procedure 10 times. In each repetition, a new shuffle is sampled, the
pretraining loss is re-evaluated for both x and 2/, and the difference is summarized as the median gap
across repetitions:

AL(z) = median,_1. 10 <L<">(x’) _ L<">(;c)).
This repetition scheme stabilizes the estimate of the shuffle-induced loss gap and ensures that results
are not driven by a particular permutation or masking pattern.

We also evaluate cell embeddings Mempeading. TO assess their biological separability, we train a
logistic regression classifier on embeddings with cell-type labels and report class-weighted F1 scores.
Data is split to 80% train and 20% test set. A stratified baseline, which samples class labels according
to empirical frequencies, is used as control. We run this analysis 10 times.

A.1.2 Interpolation analysis

To examine whether the model encodes barriers between clusters, we generate interpolated datasets
Dinterp- For annotated cell types ct; and ctz, and samples x; € cty, x; € ctp, we define an interpolated
expression profile:

¥=a-z;,+(1-a) z;, acl0l].
To normalize for inherent differences in cluster-level loss, we compute a barrier score as the log-ratio:

r(a’) = log (LW) ) :

Lbaseline (17/)

Lbase]ine(xl) = Q- Lct1 + (1 - O‘) : LCT27

where L, is the average loss over real cells of type ct.

For each pair (cty, cty), we sample N = 1000 interpolated cells, drawing o ~ U0, 1]. The average
region sensitivity is:

1
RCtthQ:N Z r(z).
TESety ety

A value R, «, > 0 indicates a convex loss profile (a “barrier”) between the clusters.

A.2 scGPT model

We refer the reader to the original manuscript ( , ) for details of scGPT and mention
here only some of its essentials.



Each cell is represented by three vectors of length M: 1. a gene token vector, 2. a binned gene
expression vector (B = 50 bins per cell), and 3. an optional condition token vector (unused in our
experiments).

A special <CLS> token aggregates the cell representation, and padding tokens <pad> ensure fixed
length.

We adhere to the data preparation pipeline for producing cell embeddings by scGPT ' where the
<CLS> is added to the Dataset object and binning, padding and random masking are handled in the Dat-
aCollator (for embeddings we disable masking; for loss estimation, we set mlm_probability=0.5).
To facilitate our two strategies of gene identity shuffling, we provide two optional proceeding
data collators: (1) Gene identity shuffling collator which permutes gene identifiers. Parameter
shuffle_zero_gene toggles between shuffling all genes (True) or expressed genes only (False); (2)
Zero-gene exclusion which mimics scGPT’s include_zero_gene flag, considered in the Dataset
object. If False, genes with zero expression are removed per cell. As scGPT was pretrained using
only expressed values, this setting is crucial for reproducibility.

The input to the transformer layers is:

ho(x) = emby(t) + emb, (x).
The contextualized embedding is obtained by passing hg through n transformer blocks:
h; = transformer block(h;—1), I=1,...,n.

The cell representation is the embedding at the <CLS> token:
he(x) = hy(x)[(CLS)].

scGPT is trained autoregressively to reconstruct masked or unknown gene expression values (see

( )). Auxiliary losses are introduced during pretraining to stabilize learning and improve
biological interpretability, including:
Gene expression prediction (GEP) loss. Predicts masked expression values directly from the
contextualized embedding:

f(x) = MLP(h,(x)),
1 2
Lgep(x) = ——— Z (f(x); —%;)7,
|Mmask| L=
J € Miask
where M, indicates the masked positions and | M ,,sx| the number of masked values.
Gene expression prediction for cell modeling (GEPC) loss. Links gene token representations to
the global cell embedding:
q; = MLP(emby(ty));, 9(x); = q; - Whe(x),

1 2
Lcepc(x) = M| Z (9(x); —%5)7,
KL € Mo
where W is a learned projection matrix.

Here, we approximate the pretraining loss L using the sum of the gene expression prediction loss and
the gene expression prediction for cell modeling loss:

L(x) = Lgep(x) + Lgepc(2).
A.3 Datasets
We use datasets from the scEval benchmark ( R ). For each dataset, we evaluate the
largest batch to minimize batch effects. Preprocessing follows scGPT’s pipeline: filtering low-count

genes, normalization, log-transformation, and selection of 1,200 highly variable genes. Only genes
within scGPT’s vocabulary are retained.

A.4 Extended analysis of results

'See code in: https://github.com/bowang-lab/scGPT/blob/main/scgpt/tasks/cell_emb.py


https://github.com/bowang-lab/scGPT/blob/main/scgpt/tasks/cell_emb.py

Dataset Batch Genes (K) Cells (K) Cell Types Input Genes (K)

Pancreas (Tran et al., 2020) 1 15.56 8.57 13 1.17
Immune (Luecken et al., 2022) 10X 12.30 10.73 12 1.18
Heart atlas (Litvinukova et al., 2020) ~ AHI1_Nuclei_Multiome-v1 32.73 2.33 11 1.01
PBMC (Zheng et al., 2017) 0 33.69 8.10 9 1.09
COVID-19 (Stephenson et al,, 2021) 1 1.20 12.74 31 1.15
Lung atlas (Luecken et al., 2022) Banovich_Kropski_2020 27.96 6.12 42 1.10

Table 1: Datasets used in evaluation. For each dataset, we report the largest batch, total number of genes
and cells, annotated cell types, and the number of genes retained after preprocessing and restriction to scGPT’s
vocabulary.

Heart atlas (r=0.03)
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Figure 6: Entropy versus shuffle-induced loss gap where only expressed genes are shuffled. Like Fig. 4,
sample distribution by the difference in pretraining loss (median of shuffled minus median of original over 10
repeats) as a function of sample entropy. Strength of correlation varies across datasets (Pearson r reported in
captions).
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Figure 7: Effect of shuffling on immune cell embeddings. Top row: embeddings of original (left) and shuffled
(right) cells colored by cell-type. Bottom row: corresponding confusion matrices of logistic regression classifiers
trained on embeddings. Shuffling all genes (A) disrupts separability, while shuffling only expressed genes (B)
preserves major type boundaries (e.g. CD4™ T cells vs. CD14™ monocytes).
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