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Abstract

We seek to automate the generation of drug-like compounds conditioned to target
protein pocket. Most current pocket-conditioned molecule generation methods
approximate the protein-molecule distribution of a finite dataset and, therefore
struggle to generate molecules with significant binding improvement over the
training dataset. We instead frame the pocket-conditioned molecule generation
task as an RL problem and develop TACOGFN, a target conditioned Generative
Flow Network model. Our method is explicitly encouraged to generate molecules
with desired properties as opposed to fitting on a pre-existing data distribution.
To this end, we develop transformer-based docking score prediction to speed up
docking score computation and propose TACOGFN to explore molecule space
efficiently. Furthermore, we incorporate several rounds of active learning where
generated samples are queried using a docking oracle to improve the docking score
prediction. This approach allows us to accurately explore as much of the molecule
landscape as we can afford computationally. Empirically, molecules generated
using TACOGFN and its variants significantly outperform all baseline methods
across every property (Docking score, QED, SA, Lipinski), while being orders of
magnitude faster.

1 Introduction

Structure-based drug design (SBDD) leverages target protein structures to design and optimize
potential drug molecules. Due to the growing availability of protein structures from ML protein
structure prediction methods [Jumper et al., 2021], and many novel targets identified from high-
throughput perturbation experiments, SBDD is becoming an increasingly powerful approach in drug
discovery.

Traditional SBDD uses molecular docking to screen virtual libraries of molecules for interaction with
a target protein, but its efficacy is impeded by the nature of its exhaustive search within a limited
virtual library. Recent works proposed accelerating virtual screening by using an ML model as the
molecular docking proxy [Gentile et al., 2022] and incorporating active learning to improve molecular
docking proxy model [Graff et al., 2021]. Nevertheless, one virtual screening campaign concerns a
single target of interest - learning from one model does not generalize to another target.

Generative models for molecules have been proposed to more efficiently explore the chemical space,
as they turn the brute-force virtual screening problem into a search problem. Current generative
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models condition molecule generation on 3D geometric information of the protein pocket using
Geometric Deep Learning model architectures [Atz et al., 2021]. Recent works in this area typically
use auto-regressive or diffusion models [Guan et al., 2023, Peng et al., 2022, Luo et al., 2022,
Schneuing et al., 2023], and could theoretically generate molecule binder from a far greater chemical
space than any virtual library for any given pocket.

As most existing generative models approximate the protein-ligand distribution of the dataset, they
are unable to propose molecules with significantly better binding affinities than the found in training
dataset without further lead optimization. Furthermore, since the availability of such data is limited,
this leads to poor generalization if the molecule complementary to a target protein pocket is outside
of the training distribution.

In contrary, we learn a RL policy for exploring the chemical space of molecules and explicitly reward
policies that construct molecules with high docking score, synthetic accessibility and drug-likeliness
score. The performance of our method no longer depend on the size of a fixed dataset, but rather on
how much compute power is available to generate molecules and compute their reward. As a result,
the molecules generated have better properties than reference; the chemical space explored is no
longer constrained by a fixed dataset.

In this paper, we employ the recently proposed RL method GFlowNet [Bengio et al., 2021], which
constructs objects with probability proportional to their reward, thus guaranteeing a diverse set of
results. We incorporate the target pocket information into GFlowNet and train a docking score
prediction model based on graph transformer [Yun et al., 2020] to estimate the affinity of a molecule
with respect to a given pocket. Since the initial training dataset may be small and biased, we
incorporate an active learning approach to improve the generalization of the docking score prediction
model. We benchmark the performance of our method, which we call TACOGFN: Target Conditioned
GFlowNet for Drug Design, on unseen pockets against current state-of-the-art baseline methods to
show that the generated molecules show higher docking scores, synthetic accessibility and drug-
likeness score. In summary, the key contributions of this work are the following:

• To our best knowledge, TacoGFN is the first method that frames the pocket-conditioned
molecule generation task as an RL problem - learning a policy that generates candidates
with probabilities proportional to reward based on docking score and desired properties.

• To solve this problem, we propose an extension of GFlowNets to incorporate protein pocket
structure context for target conditioned molecule generation.

• We incorporate an active learning approach to gradually improve the generalization of the
docking score proxy, and consequently of the GFlowNet generator.

• We performed an experimental evaluation on the Cross-Docked dataset and demonstrated
that TACOGFN generates molecules with better docking scores and properties compared to
all existing state-of-the-art methods.

2 Related work

Molecule generation methods seek to generate diverse, novel and valid molecules. Molecules have
been represented as string-based [Gómez-Bombarelli et al., 2018, Kusner et al., 2017], graph-based
[Jin et al., 2019, Shi et al., 2020] and most recently 3D geometry based methods [Gebauer et al., 2020,
Luo and Ji, 2022]. There are also a diversity of methods to construct a molecule from autoregressive
construction [Jin et al., 2019, Luo and Ji, 2022, Gómez-Bombarelli et al., 2018, Shi et al., 2020], to
diffusion models [Hoogeboom et al., 2022]. Furthermore, molecules constructed using only reaction
templates and purchasable building blocks have been proposed to constraint the model to generate
only synthesizable molecules [Gao et al., 2022].

Structure based drug design ML models hope to sample drug-like molecules for target protein
pockets. LiGAN [Ragoza et al., 2022] uses 3D CNN to encode protein pocket structure and predict
atom densities from the encoded latent space. 3DSBDD [Luo et al., 2022] and Pocket2Mol [Peng
et al., 2022] builds molecule atom by atom autoregressively. Other methods such as FLAG [Zhang
et al., 2023b] and DrugGPS [Zhang and Liu, 2023] build molecules fragment by fragment to leverage
the chemical prior. There’s also a new line of research using diffusion models [Guan et al., 2023,
Schneuing et al., 2023] for SBDD. These methods typically implicitly assume an improvement
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in molecule affinity to pocket through generating molecules and representing pocket in 3D space.
However, [Harris et al., 2023] found that despite the geometric representation, generated 3D molecules
have much more physical violations and fewer key interactions compared to reference set. In our
work, we generate molecules in 2D space instead to allow us to explore 1000 times more molecules
compared to existing models. 1

Goal-directed molecule generation methods discover molecules that satisfy optimization goals
such as binding activity and high drug likeliness. Reinforcement Learning (RL) methods such as
ReLeaSE [Olivecrona et al., 2017], MolDQN [Zhou et al., 2019] and REINVENT [Blaschke et al.,
2020] has been proposed to guide the generation of molecules toward desirable properties. MORLD
[Jeon and Kim, 2020] and MoleGuLAR [Goel et al., 2021] combine RL and docking calculations
to design novel binders. Recently, MOOD [Lee et al., 2023] incorporates out-of-distribution and
property-guided exploration in diffusion models for goal-directed molecular generation. Existing
goal-directed methods are constrained by a fixed objective function. They can only be trained to
generate high-affinity molecules for a single target, and therefore, a new model is needed for each
different protein pocket. In contrast, TACOGFN is conditioned on the protein pocket structure itself
and is trained to generate high-affinity molecules for any given pocket structure.

Figure 1: Our method consists of two
main components: (1) GFlowNet gener-
ator (yellow box) conditioned with target
pocket embedding from the pocket en-
coder (cyan box) (2) Docking score pre-
dictor (green box) that takes the pocket
embedding and generated molecule to
compute a docking reward to train the
GFlowNet policy.

Generative Flow Network (GFlowNet, GFN) [Bengio
et al., 2021] learns a stochastic policy for generating an
object (like a molecular graph) from a sequence of actions.
GFlowNet learns a policy such that the probability of gen-
erating an object is proportional to a given reward for that
object, therefore generates a more diverse set of solutions
compared to other RL methods. Following [Jain et al.,
2023a], we incorporate an active learning algorithm and
offline policy training with GFlowNet, taking advantage
of molecular docking as our oracle. We also use dock-
ing oracle queried batches as offline policy training for
GFlowNet, to guarantee explorations around known high
reward regions. We use Multi-objective GFlowNets [Jain
et al., 2023b] to generate molecules optimizing for both
docking score, drug-likeliness, and synthesizability.

3 Method

Our goal is to train a single conditional generative model
that generalizes over protein pockets. We first pre-train
the pocket embedding using geometric-vector-perceptron-
based graph neural network (GVP-GNN) [Jing et al., 2021]
on the docking score prediction task. We then take these
learned graph-level embedding of the protein pocket as
the conditioning for TACOGFN.

3.1 Target pocket conditioned GFlowNet

We introduce target pocket context as the condition for GFlowNet to generate molecules with prefer-
ential interaction with specific protein pockets, building on multi-objective GFlowNet conditioning
in [Bengio et al., 2023]. The goal is to learn a single target-conditioned GFlowNet that models
distribution associated with all pocket structures respectively. While many pocket-ligand complex
representation methods that take advantage of geometric deep learning exist, the memory and time
complexity associated with using these models for predicting every GFlowNet action makes exploring
a large number of molecules computationally expensive. Instead, we use a pocket encoder trained
from the docking score prediction task (with weights frozen) to pre-compute the pocket embedding
to condition molecule generation. This allows GFlowNet to leverage a pocket representation suitable
for computing pocket-ligand interaction, to condition the generation of high affinity molecules.

1Our method generates and evaluates ∼ 100M molecules pocket complexes compared to ∼ 100k complexes
from CrossDock dataset used by existing methods.
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3.2 Docking score proxy

Docking 100 million compound to protein pocket at the standard rate of 10 s per compound on a
single CPU core will take more than 3 years. To incorporate the docking score as a reward that is fast
to compute, we propose a docking score predictor as the proxy for the molecular docking program.
The model is trained in an end-to-end manner. First, the pocket graph embedding is computed using
a GVP-GNN [Jing et al., 2021] as the pocket encoder. The graph transformer then takes in the
molecular graph and the pocket graph embedding as inputs and extracts a ligand-pocket complex
embedding. This embedding is passed through MLP to obtain a docking score prediction.

3.3 Active learning and offline policy

As GFlowNet often samples molecules beyond the initial training distribution of the docking score pre-
dictor, the predictor can be overconfident in assigning high rewards for out-of-distribution molecules.
We incorporate a similar active learning scheme from [Jain et al., 2023a], leveraging the docking
program to compute new training labels used for improving the generalization of the docking proxy.
In addition, the evaluated batch from active learning is added to GFlowNet’s offline training dataset,
to ensure exploration around known high reward regions.

4 Experiments

Dataset and evaluation metrics Following the same data preparation and pocket sequence-based
splitting as [Peng et al., 2022] and [Guan et al., 2023], we obtain 100k pocket-ligand complexes
from Cross-Docked dataset [Francoeur et al., 2020]. We identify 15207 unique pockets and 91916
unique ligands within these complexes. Subsequently, we compute the docking score using QVina2
[Alhossary et al., 2015] for all these complexes. The pocket-ligand pairs and associated docking
score form the initial dataset for training the docking score predictor.

We evaluate the performance of target conditional molecule generation using widely used metrics
from previous work [Peng et al., 2022, Luo and Ji, 2022, Guan et al., 2023, Zhang and Liu, 2023].
(1) Vina Score approximates binding affinity between molecules and their target pockets; (2) High
Affinity measures the percentage of generated molecules with higher affinity than the reference
molecule; (3) QED measures how closely a molecule resembles properties of bioactive compounds
present in PubChem; (4) SA (synthetic accessibility) estimates how easily the molecule can be
synthesized; The score is normalized to a range of 0 to 1 using the formula (10 − SA)/9. (5)
Lipinski measures the number of rules satisfied in Lipinski rule five [Lipinski et al., 1997] - a
heuristic measuring drug-likeness; (6) Diversity is the average pairwise fingerprint dissimilarity
between generated molecules for each target; (7) Inference Time is the average time in seconds to
generate 100 molecules for one target pocket.

Baselines and evaluation We compare our method without active learning (TACOGFN) with
LiGAN [Ragoza et al., 2022], TargetDiff [Guan et al., 2023], DiffSBDD [Schneuing et al., 2023],
Pocket2Mol[Peng et al., 2022] and DrugGPS[Zhang and Liu, 2023] in the fixed dataset setting.
Since there is currently no established baseline for target-conditioned generation with active learning,
TACOGFN-AL is only compared against the original CrossDocked dataset. The TOP50 variant uses
the same model as TACOGFN-AL, but with an added fast filtering step. We rank 100 molecules
based on our trained docking score proxy and keep only the top 50 molecules with the highest docking
scores, excluding those with QED scores below 0.4 for each pocket.

Following previous works, we sample 100 molecules from the target conditional GFlowNet for
each pocket. For TACOGFN (fixed dataset setting), the docking score predictor is trained on the
Cross-Docked dataset and used for providing the reward for target conditional GFlowNet generation.
In the active learning setting (TACOGFN-AL), we conduct 3 rounds of such training and query the
docking oracle for 30k training samples each round.

Results TACOGFN outperforms all baselines in generating molecules with higher scores for all
molecular properties, including Vina Score. In particular, TACOGFN achieves excellent QED (0.681)
compared to the previous best (0.592). The poor QED of previous methods is likely due to the
low QED of the training dataset and their reliance on maximizing the likelihood. Under our RL
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Table 1: Evaluation of generated molecules for targets from the Cross-Docked test set. The baseline
results are taken from the corresponding publications. * denotes values not provided by the authors.
We report the means and standard deviations, aggregated from the metrics for each test pocket.

Methods Vina Score High Affinity QED SA Lipinski Diversity Time
Fi

xe
d

D
at

as
et

Reference -7.158±2.10 - 0.484±0.21 0.732±0.14 4.367±1.14 - -
LiGAN -6.114±1.57 0.238±0.28 0.369±0.22 0.590±0.15 4.027±1.38 0.654±0.12 *
Pocket2Mol -7.288±2.53 0.542±0.32 0.563±0.16 0.765±0.13 4.902±0.42 0.688±0.14 2503.5±2207
TargetDiff -7.318±2.47 0.581±* 0.483±0.20 0.584±0.13 4.594±0.83 0.718±0.09 ∼ 3428
DiffSBDD -7.333±2.56 * 0.467±0.18 0.554±0.12 4.702±0.64 0.758±0.05 160.3 ± 73.3
DrugGPS -7.345±2.42 0.620±0.29 0.592±0.21 0.728±0.23 4.923±0.11 0.695±0.17 956.3±451.6
TacoGFN -7.405±1.70 0.625±0.35 0.681±0.20 0.783±0.07 4.938±0.24 0.653±0.07 2.90±0.28

A
L TacoGFN-AL -7.678±1.71 0.706±0.31 0.640±0.21 0.814± 0.06 4.931±0.26 0.663±0.07 3.07±0.31

TacoGFN-AL-Top50 -7.924±1.55 0.771±0.31 0.678±0.15 0.821±0.06 4.997±0.06 0.675±0.07 3.07±0.31

framework, molecules generated from TACOGFN have significantly better properties compared to
the training dataset. Our model exhibits lower diversity compared to other methods, possibly because
we construct molecules fragment by fragment from a limited vocabulary, rather than atom by atom.
In the active learning setting, TACOGFN-AL further improves the Vina score to −7.678 compared
to −7.405 in the base model. A quick post-filtering of generated molecules using the trained docking
proxy in TACOGFN-AL-TOP50 improves the Vina score to an impressive −7.924. Finally, due
to the simple yet effective pocket representation and molecule construction process, TACOGFN
generates molecules 50 to 1000 times faster compared to baseline methods.

5 Conclusions

We presented TACOGFN - a GFlowNet tailored to the task of generalizable structure-based drug
design. This represents a paradigm shift from previous generative approaches, which learn the
distribution of a fixed dataset, to an RL approach where the model is rewarded for exploring the
chemical space and generating molecules with desired interactions and properties. To search for
high-affinity molecules with desired properties in the vast chemical space efficiently, we design a
target-conditioned GFlowNet, which incorporates pocket context and gets rewards from our proposed
docking score proxy. Empirically, we show that TACOGFN outperforms the state-of-the-art on target
conditional molecule generation for all molecular property metrics, while taking orders of magnitude
less time. We show the incorporation of active learning and screening using docking score proxy
on generated molecules can further facilitate the discovery of molecules with desirable properties.
In summary, TACOGFN and its variants can offer great value for many existing real-world SBDD
campaigns. Interesting future directions include leveraging uncertainty estimation in docking proxy,
exploring better ways of pocket representation, generating molecules using known reactions [Gao
et al., 2022] and adopting continuous GFlowNet [Lahlou et al., 2023] for molecule structure and
conformation co-design.
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Appendix

In this study, we used the open-sourced code for GFlowNet Bengio et al. [2021] and E3Bind Zhang
et al. [2023a]. Our models were implemented using the Pytorch Paszke et al. [2019] and TorchDrug
Zhu et al. [2022] libraries, which enabled efficient training and evaluation. We utilized RDKit
Landrum et al. [2006], a widely-used chem-informatics library, to handle the molecular structures
and compute chemical properties.

Running all experiments presented in this paper takes an estimated 2.5 GPU days on a single Nvidia
RTX 3090. This includes the time for training and inference of the docking score proxy. Computing
the docking score for evaluation and active learning takes about 3 days on a 6-core CPU.

Additional GFlowNet details

GFlowNet background We follow Bengio et al. [2021] to sequentially construct a molecule
fragment by fragment. Graph transformer is used to implement GFlowNet for sampling the next
action. State s0 is initialized as an empty molecular graph. For each step, we sample an action a
conditioned on state s and context c and obtain the next state by applying the action on the previous
state through transition function s′ = T (a, s). The state and action space can be represented by
a flow network N = (S,E). Where each (partial) state s ∈ S corresponds to a node in the flow
network, each transition s → s′ ∈ E corresponds to an edge connecting the nodes. The flow network
is required to be directed and acyclic, which means actions are constructive and cannot be undone. A
special action indicates the molecule object is complete. The construction of an object x is defined as
a trajectory of states τ = (s0 → s1 → · · · → x).

Loss function We adopt the trajectory balance loss Malkin et al. [2022], a loss function for
GFlowNet that speeds up learning speed through more efficient credit assignment and robustness
to long trajectories and large vocabularies. We assess the loss of an action trajectory τ within the
context of a pocket c. The GFlowNet model, characterized by parameters θ, generates forward policy
estimates denoted as PFθ

. The reward function for the end state molecule x given the pocket c is
represented by R. Additionally, Zθ is a neural network tasked with estimating F (s0). Overall, the
loss function is defined as:

LTB(τ, c; θ) =

(
log

Zθ(c)
∏

s→s′∈τ PFθ
(s′|s, c)

R(x|c)

)2

(1)

Target conditioning For each training trajectory, a random protein pocket is drawn from the
CrossDocked training set as the target context. The pocket embedding is fed to the graph transformer
responsible for sampling the next action as an additional virtual node, in addition to the multi-objective
conditioning virtual node Jain et al. [2023b]. Upon completion, the docking score is predicted for the
molecule with respect to the chosen pocket context.

Active learning and offline policy details

Active Learning For each round, we use the trained GFlowNet policy to sample 2 molecules for
each of the pockets from the CrossDocked training set. We sample a total of 30k molecules per round
for the 15k pockets. After computing the ground truth docking score for these molecule pocket pairs,
they are added to the dataset used by the docking score proxy and GFlowNet’s offline policy training.

Offline Policy Given a molecule m from training set, we sample a trajectory τ = (m, sn, · · · , s0)
that leads to m from s0. To find a parent state of s′, we sample from a uniform probability of the state
space X ⊂ S, where s → s′ if s ∈ X . Let γ ∈ [0, 1) be a hyper-parameter indicating the proportion
of offline training. At each step of GFlowNet training, γ ∗BatchSize number of trajectories will be
sampled from the training dataset, and the rest of the trajectories generated from the current online
policy.

CrossDock as offline data The initial CrossDocked dataset is used as offline data of both
TACOGFN and TACOGFN-AL. However, we were only able to map about 10% of the molecules
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from the CrossDocked dataset into a graph compatible with GFlowNet’s fragment-based molecular
construction environment. It’s conceivable that the performance of TACOGFN under the no active
learning setting will improve further if all molecules from the existing dataset can be used as offline
data. We plan to address the development of an enhanced algorithm or molecular construction
environment for calculating trajectories of existing molecules in future research.

Reward details

Processing rewards We compute the reward as a weighted sum of the predicted docking score,
drug-likeliness score (QED) and synthetic accessibility (SA), all transformed to a score from 0 to 1.
Docking score is typically a negative value that represents binding energy. Since a lower docking
score value is preferred, we clip the value to the interval [-15, 0], take its opposite, and normalize
it to the interval [0, 1]. The best docking score observed in the CrossDocked dataset is around -15
kcal/mol, so -15 is chosen as the lower bound. A positive docking score indicates non-existent
binding, so we set all positive scores to have a 0 reward for docking. QED is already a value from 0
to 1. SA is normalized by the formula (10− SA)/9.

Scalarization The scalarization method from Jain et al. [2023b] is used to transform d objectives
into a single reward R =

∑d
i=1 wiRi, via weights vector w, where wi > 0 and

∑d
i=1 wi = 1.

During training, these reward weights are drawn from the Dirichlet distribution of order d with
parameter α = (1, 1, · · · , 1).

Molecular domain details

Available fragments We use the same fragment based molecular construction environ-
ment as Bengio et al. [2021]. There is a library of 72 pre-defined fragments. The
72 fragment in SMILES format are Br, C, C#N, C1=CCCCC1, C1=CNC=CC1, C1CC1,
C1CCCC1, C1CCCCC1, C1CCNC1, C1CCNCC1, C1CCOC1, C1CCOCC1, C1CNCCN1, C1COCCN1,
C1COCC[NH2+]1, C=C, C=CC, C=N, C=O, CC, CC(C)C, CC(C)O, CC(N)=O, CC=O, CCC, CCO,
CN, CNC, CNC(C)=O, CNC=O, CO, CS, C[NH3+], C[SH2+], Cl, F, FC(F)F, I, N, N=CN,
NC=O, N[SH](=O)=O, O, O=CNO, O=CO, O=C[O-], O=PO, O=P[O-], O=S=O, O=[NH+][O-],
O=[PH](O)O, O=[PH]([O-])O, O=[SH](=O)O, O=[SH](=O)[O-], O=c1[nH]cnc2[nH]cnc12,
O=c1[nH]cnc2c1NCCN2, O=c1cc[nH]c(=O)[nH]1, O=c1nc2[nH]c3ccccc3nc-2c(=O)[nH]1,
O=c1nccc[nH]1, S, c1cc[nH+]cc1, c1cc[nH]c1, c1ccc2[nH]ccc2c1, c1ccc2ccccc2c1,
c1ccccc1, c1ccncc1, c1ccsc1, c1cn[nH]c1, c1cncnc1, c1cscn1, c1ncc2nc[nH]c2n1.

Available actions There are 3 types of actions: adding a fragment, setting the connection point,
and stop. Adding a fragment adds a new fragment node, and a new edge between the new node and
an existing node (if the graph is not previously empty). Setting the connection point adds the edge
feature which specifies which two atoms, one from each of the connected fragments, will have a
single bond added between them. Note that the edge feature can only be set once per edge to prevent
cycles in the flow graph. Stop marks the finish of a molecule. We set an upper limit of 9 fragments
for each graph. Illegal actions that produce invalid molecules are masked out.

Additional experimental details

Processing positive docking score On the rare occasion that the GFlowNet generation produces a
molecule with a non-existent binding as indicated by a positive docking score, we set its Vina Score
as 0 and include this data point in our calculation. In practice, only 0.5% (50 out of 10,000) molecules
generated during evaluation had a positive docking score.

Reward scaling Each reward can be scaled by a constant factor - the reward scale to either increase
or decrease that reward’s importance in the total reward. Theoretically, multi-objective GFlowNet can
learn to generate molecules on the entire Pareto front without the need to scale any reward. However,
in practice, scaling the reward score by a constant factor larger than 1 enables the model to generate
molecules with higher scores for that particular property. Reward scaling is used to upscale the
importance of QED and SA to ensure the model places less importance on the less certain predicted
docking score. The chosen reward scales for each objective are listed in Table 2. We leave the
research direction of using low-fidelity reward signals in GFlowNet for future work.
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Evaluation reward weight distribution Unlike existing methods that model the distribution of
molecule given target pocket, TACOGFN models molecule distribution conditioned to target pocket
and multi-objective reward preference. By modifying the reward preference vector, TACOGFN is
able to model a family of distributions and generate molecules on various points of the Pareto front.
The choice for reward preference vector depends on the specific application’s prioritization of the
objectives. In our case, we picked the α of the Dirichlet process for reward weight sampling such
that the molecules generated simultaneously had a higher average Vina Score, QED, and SA than
all existing methods. The chosen α values are listed in Table 2. It was possible to generate a higher
Vina Score at the cost of lower QED, and vice versa. We leave the evaluation of Pareto front related
metrics for TACOGFN in future work.

Sample of generated molecules

Figure 2: Examples of generated molecules from TACOGFN with higher docking scores than the
references. We report the vina scores, QED, and SA scores for each molecule. The target protein
pocket is visualized as Ribbon diagrams.

Algorithms

We summarize the algorithms for active learning loop and docking score prediction here.
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Algorithm 1 Active Learning with GFlowNet
Input:
O: Docking program to evaluate protein pocket Pi and ligand Li and return labels Yi

M : Docking score predictor that predicts docking score using protein pocket Pi and ligand Li

R: Computes reward from predicted docking, QED, SA for ligand Li and a given protein pocket
T : Generative policy trainable from a reward function R and from which candidates m can be
sampled
D1 = {(Pi, Li, yi)}: Initial dataset with yi = O(Pi, Li)
N : Number of active learning rounds (outer loop iterations)
b: Size of candidate batch to be generated
Algorithm:
for i = 1 to N do

Fit M on dataset Di

Train GFlowNet T using reward function R
Sample query batch B = {m1, . . . ,mb} using T
Evaluate batch B with O: Di+1 = {(mi, O(mi))}
Update dataset Di+1 = Di ∪Di+1.

end for

Algorithm 2 Docking Score Prediction
Input:
p = (ri, ci)ni=1: protein pocket with n amino acids; its i-th residual has type xi with coordinate ci
m = {A,B}: molecule represented by 2D graph; its atom has element type and edge has bond
features.
Output:
y: predicted docking score of the protein pocket and the molecule.
Algorithm:
{hp

j} = GV PGNN(p)

hp = Mean({hp
j})

{hc
i} = GraphTransformer(m,hp)

y = MLP (Mean({hc
i}))

return y
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Hyperparameters

Table 2: Hyperparameters used for target conditional GFlowNet

Values

Hyperparameters TacoGFN TacoGFN-AL

Batch size 384 384
Reward exponent β ∼ Uniform(0, 96) β ∼ Uniform(0, 96)
Reward exponent for evaluation/AL 96 96
Reward scale - QVina 1 1
Reward scale - QED 2 2
Reward scale - SA 1.25 1.25
Number of training steps 7000 7000
Number of transformer layers 6 6
Number of transformer heads 2 2
Transformer node embedding size 128 128
Learning rate for GFN’s PF 10−4 10−4

Learning rate for GFN’s Z−estimator 10−3 10−3

Sampling moving average τ 0.95 0.95
Random action probability 0.01 0.01
Offline ratio 0.25 0.25
# of molecules sampled/pocket/round - 2
Evaluation dirchlet αQV ina 5 5
Evaluation dirchlet αQED 0.5 0.5
Evaluation dirchlet αSA 2.25 2.25

Table 3: Hyperparameters used for docking score proxy

Hyperparameters Values

Epoch (per round) 25
Batch size 16
Learning rate 10−4

Number of transformer layers 3
Number of transformer heads 2
Transformer node embedding size 128
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