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Abstract

We introduce VH-Diff, an antibody heavy chain variable domain diffusion model.1

This model is based on FrameDiff, a general protein backbone diffusion framework,2

which was fine-tuned on antibody structures. The backbone dihedral angles of3

sampled structures show good agreement with a reference antibody distribution. We4

use an antibody-specific inverse folding model to recover sequences corresponding5

to the predicted structures, and study their validity with an antibody numbering6

tool. Assessing the designability and novelty of the structures generated with our7

heavy chain model we find that VH-Diff produces highly designable structures that8

can contain novel binding regions. Finally, we compare our model with a state-of-9

the-art sequence-based generative model and show more consistent preservation of10

the conserved framework region with our structure-based method.11

1 Introduction12

Engineering novel proteins that can satisfy specified functional properties is the central aim of rational13

protein design. While sequence-based methods have seen some success [Wu et al., 2021], they are14

intrinsically limited by the fact that most properties of a molecule, such as binding or solubility, are15

determined by their three-dimensional structure. Recent advances in diffusion models [Ho et al.,16

2020, Song et al., 2021], a class of deep probabilistic generative models, have shown promise as a17

data-driven alternative to more computationally expensive physics-based methods [Alford et al., 2017]18

in tackling de novo protein design. Most approaches focus on modelling only the backbone [Watson19

et al., 2022, Lin and AlQuraishi, 2023], while the sequence is inferred through an inverse folding20

model, though some full-atom models have been explored [Chu et al., 2023, Martinkus et al., 2023].21

An application of particular therapeutic relevance is the design of immunoglobulin proteins, which22

play a central role in helping the adaptive immune system identify and neutralise pathogens. They23

consist of two heavy and two light chains. These are separated into constant domains that specify24

effector function, and a variable domain that contains six hypervariable loops, known as the comple-25

mentarity determining regions (CDR), which control binding specificity. Monoclonal antibodies are26

an emerging drug modality with the potential for applications in a wide range of therapeutic areas, for27

example onconogenic, infectious and autoimmune diseases. They can be adapted to target specific28

antigens or receptors through engineering of the binding site [Chiu et al., 2019].29

In this article, we consider the recent backbone diffusion model FrameDiff [Yim et al., 2023] and30

fine-tune it on synthetic antibody structures from the ImmuneBuilder dataset [Abanades et al., 2022].31

We focus on the variable region of the heavy chain, which is the most structurally diverse domain32

of the antibody, and whose CDR-H3 often determines antigen recognition [Narciso et al., 2011,33

Tsuchiya and Mizuguchi, 2016]. We study the designability and novelty of the structures generated34
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Figure 1: Schematic representation of an antibody, the heavy chain variable domain, and the parametri-
sation of backbone residues into frames used by the diffusion model. Each frame consists of four
heavy atoms connected by rigid covalent bonds.

by our heavy chain model and predict the corresponding sequences with AbMPNN [Dreyer et al.,35

2023], an antibody-specific inverse folding model based on ProteinMPNN [Dauparas et al., 2022].36

2 SE(3) protein backbone diffusion model37

We review the SE(3) diffusion framework introduced in Yim et al. [2023], which constructs an explicit38

framework for the diffusion of protein backbones based on the Riemannian score-based generative39

modeling approach of Bortoli et al. [2022].40

For the backbone frame parametrisation we adopt the same formalism as in AlphaFold2 [Jumper41

et al., 2021], using a collection of N orientation preserving rigid transformations to represent an N42

residue backbone, as shown in figure 1. These frames map from fixed coordinates of the four heavy43

atoms N∗, C∗
α, C

∗, O∗ ∈ R3 centered at C∗
α = 0⃗, assuming experimentally measured bond lengths44

and angles [Engh and Huber, 2012]. The main backbone atomic coordinates for a residue i are given45

through46

[Ni, Ci, Cα,i] = Ti · [N∗, C∗, C∗
α] , (1)

where Ti ∈ SE(3) is a member of the special Euclidean group, the set of valid translations and47

rotations in Euclidean space. A backbone consists of N frames [T1, . . . TN ] ∈ SE(3)N , with the48

oxygen atom O being reconstructed from an additional torsion angle ψ ∈ SO(2) around the Cα and49

C bond. Each frame is decomposed into Ti = (ri, xi), where xi ∈ R3 is the Cα translation and50

ri ∈ SO(3) is a 3 × 3 rotation matrix which can be derived from relative atom positions with the51

Gram-Schmidt process. A diffusion process over SE(3)N can be constructed to achieve global SE(3)52

invariance by keeping the diffusion process centered at the origin.53

We model the distribution over SE(3)N through Riemannian score-based generative modeling, which54

aims to sample from a distribution supported on a Riemmanian manifold M by reversing a forward55

process that evolves from the data distribution p0 towards an invariant density pT through56

dXt = − 1
2∇U(Xt)dt+ dBt,M , X0 ∼ p0 , (2)

where Bt,M is the Brownian motion on M, U(x) is a continuously differentiable variable defining57

the invariant density pT ∝ e−U(x), ∇ is the Riemannian gradient, and t ∈ [0, T ] is a continuous time58

variable. The time-reversed process for Yt = XT−t also satisfies a stochastic differential equation59

given by60

dYt =
[
1
2∇U(Yt) +∇ log pT−t(Yt)

]
dt+ dBt,M , Y0 ∼ pT , (3)

where pt is the density of Xt. The Riemannian gradients and Brownian motion depend on a choice61

of inner product on M, which for SE(3) can simply be derived from the canonical inner products on62

SO(3) and R3. The invariant density on SE(3) is chosen as pT ∝ USO(3)(r)N (x).63

The Stein score ∇ log pt itself is intractable and is therefore approximated with a score network sθ64

which is trained with a denoising score matching loss given by65

LDSM(θ) = E
[
λt∥∇ log pt|0(Xt|X0)− sθ(t,Xt)∥2

]
, (4)
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Figure 2: Left: Ramachandran plot of the dihedral angle distribution comparing the heavy chain
residues from the predicted structures of the Observed Antibody Space to VH-Diff. Right: Distribution
of number of residues that are missing annotations with Anarci, an antibody numbering tool.

where λt is a weighting schedule, pt|0 is the density of Xt given X0, and the expectation is taken66

over t and the distribution of (X0,Xt). The loss on SE(3) is decomposed into its translation and67

rotation components as LDSM = Lx
DSM + Lr

DSM.68

To mitigate chain breaks or steric clashes and to learn the torsion angle ψ, two auxiliary losses are69

used. The first one is a direct mean squared error on the backbone positions Lbb, while the second70

one is a local neighbourhood loss on pairwise atomic distances L2D. These losses are applied with a71

weight w when sampling t near 0, when fine-grained characteristics of the protein backbone emerge,72

such that the full training loss is expressed as73

L = LDSM + wΘ
(
T
4 − t

)(
Lbb + L2D

)
. (5)

The score network is based on the structure module of AlphaFold2 [Jumper et al., 2021] and performs74

iterative updates over L layers by combining spatial and sequence based attention modules using an75

Invariant Point Attention and a Transformer [Vaswani et al., 2017], considering a fully connected76

graph structure. As well as a denoised frame, the network also predicts the torsion angle ψ for each77

residue, from which the positions of the backbone oxygen atoms can be reconstructed.78

Sampling is achieved through an Euler-Maruyama discretisation of equation (3) which is approxi-79

mated with a geodesic random walk [Jørgensen, 1975]. To avoid destabilisation of the backbone80

in the final sampling steps, trajectories are instead truncated at a time ϵ > 0. For all numerical81

applications, we use identical parameters to the original FrameDiff model [Yim et al., 2023].82

3 Generating de novo heavy chains83

We train this SE(3) diffusion model on antibody data, specifically targeting the variable domain of84

the heavy chain which is more diverse and whose CDR loops play a key role in defining the binding85

properties of the antibody. Our dataset consists of 148,832 variable regions from the Observed86

Antibody Space (OAS) [Kovaltsuk et al., 2018, Olsen et al., 2022], a database of paired and unpaired87

antibody sequences, for which structures were predicted with ABodyBuilder2 [Abanades et al.,88

2022, Abanades, 2022], an antibody structure prediction model based on the structure module of89

AlphaFold-Multimer [Evans et al., 2022].90

We filter our antibody dataset to retain only the heavy chain structures, and train our model, VH-Diff,91

on this single domain data. The model is obtained by fine-tuning the original FrameDiff weights for92

6 days on 8 NVIDIA A10G GPUs, using an Adam optimizer [Kingma and Ba, 2017] with a learning93

rate of 10−4 and a batch size of 64.94
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Figure 3: Left: Designability (scRMSD) vs. novelty (OAS-TM) scatter plot for VH-Diff. Lower
values indicate higher designability and novelty. Right: Selected heavy chain samples with novel and
designable structures, shown superimposed to their closest match from the Observed Antibody Space.

Using our trained heavy chain model, we generate unpaired heavy chain variable regions by sam-95

pling uniformly backbones with 110 to 130 residues. Using the biobb_structure_checking96

package [Andrio et al., 2019], we identify and remove structures that contain chain breaks, which97

make up 16.2% of the model output.98

Sequences are predicted using the antibody-specific inverse folding model AbMPNN [Dreyer et al.,99

2023], an adaptation of the general protein model ProteinMPNN [Dauparas et al., 2022]. We sample100

5 sequences for each generated structure.101

4 Study of generated structures102

We investigated the quality of the structures generated by our VH-Diff model. In figure 2, we show the103

Ramachandran plot of the backbone dihedral (ϕ, ψ) angles, and compare it with the distributions of104

the corresponding structures of the OAS data, finding good overlap. We also annotate the sequences105

predicted with AbMPNN using Anarci [Dunbar and Deane, 2015], an antibody sequence numbering106

tool. We find that 88.9% of heavy chains are parsed correctly by Anarci, though some sequences107

have missing annotations towards their extremities. For further analysis, we remove heavy chain108

samples for which any of the AbMPNN predicted sequences have five or more residues which are109

missing anarci annotations, leaving 52.8% of the generated structures.110

To study the designability of our models, we consider a self-consistency root mean squared error111

(scRMSD) metric, computing the RMSD between the Cα coordinates of our generated structures112

and those of the structures predicted from the AbMPNN sequences using ESMFold [Lin et al.,113

2022]. Specifically, we predict an ESMFold structure for all five AbMPNN sequences and keep114

the smallest scRMSD per sample. As a measure of novelty, we compute the maximum template115

modeling score [Zhang and Skolnick, 2004] between our generated samples and all structures in the116

OAS data (OAS-TM). A scatter plot of this designability versus novelty measure is shown in figure 3,117

along with selected examples that have high novelty and designability scores.118

We compare our VH-Diff model with IgLM [Shuai et al., 2022], a generative antibody language119

model. To this end, we generate unconditioned human heavy chain sequences with IgLM, and predict120

their respective structures using ESMFold. The distribution of backbone dihedral angles is shown in121

figure 4 (left), overlayed with the corresponding OAS distribution. Here we observe a relatively good122

overlap with the underlying OAS distribution, though some notably discrepancies when comparing123

with figure 2 that indicate both models are converging to somewhat different antibody representations.124

We note here that while the VH-Diff and IgLM distributions look relatively comparable, our model125

was trained on a relatively small dataset of paired OAS structures, while IgLM used a training set126

of 558M, and that we sample uniform heavy chain lengths. On the right-hand side of figure 4, we127
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Figure 4: Left: Ramachandran plot of the dihedral angle distribution comparing the heavy chain
residues from the predicted structures of the Observed Antibody Space to ESMFold predictions of
IgLM heavy chain sequences. Right: Comparison of the OAS-TM distributions, along with selected
IgLM structures, shown superimposed to their closest match from the Observed Antibody Space.

compare the distribution of OAS-TM scores for VH-Diff and IgLM. Here we observe that while128

IgLM has a few high-scoring samples that almost exactly reproduce an OAS sample, the bulk of the129

distribution has relatively low scores. These tend to involve large modifications in the framework130

regions of the heavy chain, and are therefore unlikely to be viable as antibody domains.131

5 Conclusions132

In this article, we have introduced a model for de novo heavy chain generation, VH-Diff. This model133

is derived from the recent SE(3) diffusion framework FrameDiff, by fine-tuning on antibody variable134

domains. The weights of our VH-Diff model are made publicly available.135

We show that our heavy chain model is able to recapitulate the expected backbone dihedral distribution,136

and studied the validity of the sequences recovered from generated samples using an antibody-specific137

inverse folding model. Studying the designability of the generated structures by comparing them138

with structure predictions based on the corresponding sequences, we found excellent agreement. We139

probed our model for novelty by finding the closest match in the training data for each sampled140

structure and found it could generate structures distinct from those in the training set. Comparing141

VH-Diff with a generative language model for which structures were predicted, we found that our142

structure-based diffusion model had an improved coverage of the underlying dihedral distribution143

and novel structures that more consistently preserved conserved framework regions of the antibody.144

Diffusion models trained on antibodies offer a promising approach to accelerate drug design through145

data-driven generative AI. The work presented here provides a promising step towards de novo146

antibody design. Conditioning the generation of samples to express desired properties and conserved147

framework residues, as well as to target specified antigens, will be key steps towards facilitating their148

application in therapeutic development.149
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