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Abstract

Virtual screening of large compound libraries to identify potential hit candidates is
one of the earliest steps in drug discovery. As the size of commercially available
compound collections grows exponentially to the scale of billions, brute-force
virtual screening using traditional tools such as docking becomes infeasible in terms
of time and computational resources. Active learning and Bayesian optimization
has recently been proven as effective methods of narrowing down the search space.
An essential component in those methods is a surrogate machine learning model
that is trained with a small subset of the library to predict the desired properties
of compounds. Accurate model can achieve high sample efficiency by finding the
most promising compounds with only a fraction of the whole library being virtually
screened. In this study, we examined the performance of pretrained transformer-
based language model and graph neural network in Bayesian optimization active
learning framework. The best pretrained models identifies 58.97% of the top-50000
by docking score after screening only 0.6% of an ultra-large library containing 99.5
million compounds, improving 8% over previous state-of-the-art baseline. Through
extensive benchmarks, we show that the superior performance of pretrained models
persists in both structure-based and ligand-based drug discovery. Such model can
serve as a boost to the accuracy and sample efficiency of active learning based
molecule virtual screening.

1 Introduction

As an important step in early-stage drug discovery, structure-based virtual screening methods, such as
molecular docking[1–3] and molecular dynamics simulation[4, 5], predict the conformation and pose
of a ligand in target protein binding pockets and formulate a quantitative measurement of binding
affinity[1]. Among all structure-based virtual screening methods, molecular docking estimate the
protein-ligand binding affinity by optimizing a parameterized scoring function[6–8]. Molecular
docking is one of the most popular choices thanks to its relatively lower computational cost[2, 9, 10]
(usually a few CPU seconds for each ligand[11]) and acceptable accuracy. Many successes are
witnessed in identifying potential drug candidates[12–15] using molecular docking.

In the past decade, the size of synthesizable on-demand compound libraries has grown exponentially.
For example, the size of ZINC database has increased from 120 million molecules in 2015[16] to
more than 1 billion molecules in 2020[17]. Commercially available Enamine REAL database[18]
now includes 6 billion synthetically feasible compound selected from a larger Enamine REAL Space
containing 36 billion compounds[19]. As the the number of organic molecules with 30 heavy atoms
is estimated to be 1060[20], the ultralarge compound libraries can be expected to expand in the future.

The NeurIPS 2023 Workshop on New Frontiers of AI for Drug Discovery and Development (AI4D3 2023), New
Orleans, LA, USA, 2023.



Although the sheer size of those libraries allows the possibility of identifying new and non-proprietary
drug candidates, it brings challenges to the virtual screening campaign. Exhaustive virtual screening
using molecular docking on the ultralarge libraries can be a Herculean task or even infeasible due to
required computational resources and time[21–24]. Therefore, docking strategies that can accelerate
screening of ultralarge libraries or reduce the screening space without compromising hit recovery
rate will be beneficial to the drug discovery industry.

The rapid advances of machine learning provide researchers a powerful tool to accelerate docking-
based virtual screening. Machine learning models are trained as a faster surrogate of molecular
docking to either predict the docking score[25] or classify if a compound is a hit[26, 27]. In the
application of machine learning to molecule virtual screening, the accuracy of surrogate model can
directly influence the hit recovery rate. The data used for the training of machine learning model
is obtained through docking a subset of the library. Larger training set generally leads to higher
prediction accuracy but docking more compounds increases the computation burden. Optimizing
the trade-off between computation cost and model accuracy is a problem within the scope of active
learning. Active learning is a subfield of machine learning that aims to train accurate model using
minimum amount of data by allowing the model to actively sample unlabelled data to be added into
the training set[28, 29]. Many previous works have shown the applicability of active learning in
sample efficient molecule virtual screening. Yang et al.[11] demonstrate that active learning with
graph convolutional neural network can recover > 90% by docking only 5% of the library. Deep
Docking proposed by Gentile et al.[26, 27] enables the virtual screening on 1.36 billion compounds by
100-fold data reduction. Graff et al.[30] develop a framework (MolPAL) based on batched Bayesian
optimization[31, 32], which formulate a strong synergy with pool-based active learning[33, 29], to
successfully recover 94.8% of the top-50000 compounds from a 99.5 million sized library. Such
a framework is shown to be effective in noisy environment[34] (a common problem with docking
data), and a pruning algorithm is developed to further improve efficiency by reducing the screening
space[35].

The choice of surrogate machine learning model in the active learning framework is one of the
dominant factors that affect the hit recovery rate. A more accurate surrogate model can achieve high
sample efficiency by allowing the active learning virtual screening to identify more hit candidates with
less docking necessary. Self-supervised pretraining is a well-established technique to improve the
models’ performance in downstream tasks like regression. The goal of self-supervised pretraining to
enable model to learn a better representation of data using the large quantity of unlabeled data. With
the growth of molecular data, molecular representation learning through self-supervision has attracted
academic attention[36]. Language models such as transformer pretrained using mask-language-
modeling on large scale SMILES data[37–39] show promising accuracy in molecular property
prediction. Graph neural network (GNN) can also be pretrained in a contrastive learning manner[40]
using molecular graph augmentation[41, 42]. Moreover, joint pretraining across graph/text or 2D/3D
data has been proven to be beneficial to models in molecular or material property prediction[43–45].
The success of pretrained models in molecular representation learning inspires us to leverage them
for more sample-efficient virtual screening. In this work, we benchmark two pretrained models
including molecular language transformer[39] (MoLFormer) and molecular contrastive learning
pretrained graph isomorphism network[41, 46] (MolCLR) in the MolPAL framework for molecule
virtual screening. We demonstrate that pretrained models can achieve consistently higher hit recovery
rate and enrichment factor on 50 thousand to 99.5 million compound datasets compared with a
strong baseline, directed message passing neural network[47] (D-MPNN). We also compare the
models’ performance with different acquisition functions, including greedy and upper confidence
boundary (UCB), and study the effect of uncertainty level on hit recovery rate and chemical diversity
of identified compounds. At last, we extend the applicability of MolPAL with pretrained surrogate
models to ligand-based drug discovery by virtual screening large library based on the 3D similarity to
known active compounds. Pretrained deep learning models are shown to be superior surrogate model
choices in both structure-based and ligand-based active learning virtual screening.

2 Results and discussion

The active learning is conducted using the batched Bayesian optimization framework, MolPAL,
implemented by Graff et al[30] (Figure 1a, details in the Appendix). MolPAL consists of three
important components including a surrogate model, acquisition function, and an objective function.
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The objective function can be a docking protocol in structure-based drug discovery. During the virtual
screening of a large pool of molecules for potential hit to a protein target, a small batch of molecules
are randomly selected and docked. The docking scores are used to train the surrogate model in a
supervised manner such that the surrogate model can be used to predict the docking scores of all other
molecules in the pool. The acquisition function evaluates the molecule pool based on the prediction
from surrogate model and further selects another batch of molecules to augment the surrogate model
training dataset. The above iterative process repeats until a user-defined stopping criterion, which is a
fixed number of iterations in our case, is satisfied. We conduct retrospective studies on all datasets,
meaning that the docking score of all molecules are pre-calculated and an oracle lookup function is
used to retrieve the docking score during the active learning process instead of performing docking
on-the-fly. Two acquisition functions tested in this work are the Greedy (Eq.1) and upper confidence
boundary (UCB, Eq. 2). Details of all surrogate models and the training process are included in the
Appendix. Pretraining strategies of MoLFormer and MolCLR are visualized in Figure 1b and 1c.
The metrics we use to evaluate the performance of the Bayesian optimization active learning is the
percentage of top-k molecules retrieved (identified through SMILES) or top-k retrieval rate and the
enrichment factor (EF). The EF is defined as the percentage of top-k molecules retrieved by active
learning over the percentage of top-k molecules retrieved by random selection.

MoLFormer MolCLR

(a)

(b) (c)

Figure 1: (a) The Bayesian optimization based active learning framework. For ligand-based virtual
screening, the docking can be substitute by ligand similarity calculation such as Rapid Overlay of
Chemical Structures (ROCS). (b) Schematic of mask-language-modeling pretraining process of the
MoLFormer model. Green pads are tokenized SMILES, and blue pads represent masked tokens.
MoLFormer is trained to predict masked tokens. (c) Schematic of the molecular contrastive learning
pretraining process of the MolCLR model. Solid boxes contain original molecular graphs and dashed
boxes contains augmented graphs. Grey circles represent masked nodes and dashed edges represent
deleted bond during the augmentation process. Contrastive loss is applied on representations of
augmented molecular graphs.
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Figure 2: Percentage of the top-500 (top-1%) molecules in the Enamine 50K dataset retrieved after 5
iterations of Bayesian optimization using different surrogate models. The initial training set of the
surrogate model contains 1% of randomly selected molecules. Each following acquisition selects
extra 1% molecules according to the Greedy (left) or the UCB (right) strategy. Each data point is an
average of 5 runs with different initial seeds and error bars represent one standard deviation.

2.1 Enamine libraries

Two Enamine compound libraries are used for benchmark in this work. The smaller one is the
Enamine Discovery Diversity Set which contains 50,240 compounds (Enamine 50k). The larger
one is the Enamine HTS collection (Enamine HTS) containing 2,141,514 molecules. The Enamine
50K and HTS datasets are publicly available on the code repository of MolPAL[30]. Molecules in
both of the Enamine datasets are docked using AutoDock Vina[7] against thymidylate kinase (PDB
ID: 4UNN)[48]. The docking procedure is detailed in ref[30]. When the models are evaluated on
the Enamine 50k, 1% of the dataset is randomly selected for the initial model training. Following
the initialization, 5 iterations of 1% batch acquisition are done resulting in 6% of the dataset being
explored. MoLFormer retrieves 78.36% of the top-500 molecules after 5 iterations of acquisition,
followed by LightGBM (69.44%), MolCLR (67.08%), D-MPNN (65.32%), and RF (54.52%), using
the Greedy strategy (Figure 2 left). UCB strategy slightly improves the top-500 retrieval rate of deep
learning models, MoLFormer, MolCLR, and D-MPNN to 79.24%, 67.96%, and 66.88%, respectively.
However, the UCB negatively impacts LightGBM and RF and causes their top-500 retrieval rate drop
to 40.88% and 37.08%, respectively (Figure 2 right). Calculated based on the higher retrieval rate of
either Greedy or UCB acquisition strategy, the EF of MoLFormer is 13.2, exceeding MolCLR (11.33),
D-MPNN (11.15), LightGBM (11.57), and RF (9.09). The difference in the performance of GNN
models, MolCLR and D-MPNN, is very small on the Enamine 50k dataset. LightGBM when used
with the Greedy strategy is the second only to the MoLFormer. Considering its low computational
cost, LightGBM is a promising surrogate model for screening small libraries.

The same five surrogate models are further benchmarked on the larger Enamine HTS set (Figure 3)
after their high EF is validated on the smaller Enamine 50k set. Given that the ultimate goal of active
learning is to retrieve top performing compounds by minimum amount of evaluation, reduced batch
size (0.2% or 0.1%) is used for the initial selection and iterative acquisition for the Enamine HTS
set. Using the Greedy strategy and 0.2% of acquisition batch size, MoLFormer retrieves 92.24% of
the top-1000 molecules by exploring only 1.2% of the whole dataset, exceeding all other models.
With the increase size of dataset, D-MPNN (89.88%) and MolCLR (86.98%) consistently outperform
LightGBM (82.5%) and RF (68.18%). Deep learning models are generally better surrogate model
choices when virtual screening large libraries. Smaller acquisition batch size improves the top-k
retrieval rate when the total number of explored compound remains the same. For example, after
exploring 0.6% of the dataset (12,855 molecules) using the Greedy strategy, MoLFormer retrieves
81.58% of the top-1000 compounds with the 0.1% batch size, higher than 75.9% with the 0.2% batch
size. Smaller acquisition batch size also minimizes the performance gap between the D-MPNN and
MolCLR. With Greedy strategy and 0.1% batch size, MolCLR retrieves 72.78% of the top-1000
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Figure 3: Percentage of the top-1000 (top-0.05%) molecules in the Enamine 50K dataset retrieved
after 5 iterations of Bayesian optimization using different surrogate models. The initial training set of
the surrogate model has the same size of the molecule batch acquired in each following iteration. The
results of 0.2% batch size (left two panels) and 0.1% batch size (right two panels) are shown. Each
data point is an average of 5 runs with different initial seeds and error bars represent one standard
deviation.

compounds after exploring 0.6% of the dataset, which is slightly higher than 72.76% of the D-MPNN.
When the batch size is 0.2%, the top-1000 retrieval rate of D-MPNN (65.62%) is noticeably higher
than that of MolCLR (60.86%) after exploring 0.6% of the dataset. UCB strategy consistently improve
the top-1000 retrieval rate of MoLFormer by 1-2.5% regardless of the batch size on the Enamine
HTS set. Similar to the results on the Enamine 50k set, top-1000 retrieval rates of LightGBM and RF
drastically decrease by 11.6-19.7% using the UCB instead of the Greedy strategy. However, neither
Greedy nor UCB strategy is conclusively better than the other one based on the top-1000 retrieval
rate comparison between D-MPNN and MolCLR. Calculated based on the higher retrieval rate of
either Greedy or UCB acquisition strategy with 0.1% batch size, the EF of MoLFormer is 140.2,
higher than D-MPNN (124.37), MolCLR (121.3), LightGBM (112.97), and RF (91.23).

2.2 Effect of uncertainty weight in UCB acquisition

(a) (b)

Figure 4: The effect of increasing uncertainty weight (β) in the UCB acquisition function. (a)
Top-1000 molecule retrieval rate of different surrogate models with increasing β (b) Average Dice
similarity of molecules retrieved by different surrogate models with increasing β. The results shown
are from exploring 0.6% of the EnamineHTS set with 0.1% initialization and acquisition batch size.
Each point is averaged value over three runs with different initial seed and error bar represents one
standard deviation.

In the UCB acquisition function (Eq. 2), the weight of uncertainty in acquiring new samples is
regulated by a hyperparameter β. To further understand the effect of β on the top-k molecule retrieval
rate and the diversity of retrieved molecules, we run the BO active learning with β value enumerating
from 0, 2, 5, 10, 20 on the Enamine HTS set. The results (Figure. 4) are obtained using the 0.1%
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batch size for initialization and iterative acquisition (0.6% of total dataset explored at the end). When
β = 0, Greedy acquisition function is used. It is noticeable that the top-1000 retrieval rate peaks
(Figure. 4a) for all models when β = 2, which is the default value of β, indicating that adding a term
of uncertainty with small weight during acquisition can benefit the performance of the active learning.
However, the top-1000 retrieval rate drops with greater β value. For MoLFormer and D-MPNN,
the retrieval rate converges to around 50%, while the retrieval rate of MolCLR has negatively linear
relationship with β and drops to 24.4% when β = 20 without converging. To quantify the diversity
of retrieved molecules, we compute the pairwise Dice similarity of molecules based on their Morgan
Fingerprint with radius of 3. The average similarity between retrieved molecules drops with greater
β value, reflecting that the models tend to acquire more diverse molecules when uncertainty weight is
higher in the acquisition function. If exploring a more diverse set of compound is desired during the
active learning based virtual screening, tuning up the β value is an effective option.

2.3 Hundred-million scale libraries

Industrial level virtual screening is usually conducted on ultra-large libraries containing hundred-
millions or billions of compounds. To evaluate the performance of MolPAL with pretrained models
on ultra-large library, we run the previous benchmarks on the dataset curated by Lyu et al.[23]. The
dataset contains 99.5 million compounds docked against the AmpC β-lactamase (the AmpC dataset
in short, PDB ID: 1L2S) using Dock3.7[8]. Since the deep learning surrogate models including
MoLFormer, D-MPNN, and MolCLR significantly outperforms LightGBM and RF on large dataset
like the Enamine HTS, only them are selected to be benchmarked on the AmpC dataset. The
initialization and acquisition batch size is set to be 0.1% of the whole dataset as we want to evaluate
the models’ performance given minimum amount of docking calculation. The ranking of top-50000
retrieval rate using the Greedy strategy is MolCLR (58.965%) > MoLFormer (55.497%) > D-MPNN
(50.021%). The UCB strategy reduces the top-50000 retrieval rate of MolCLR and MoLFormer to
55.659% and 54.633%, respectively, but improves that of the D-MPNN to 55.03%. Among the three
models (Table S4), MolCLR has the highest EF of 98.28, which is 6.2% higher than MoLFormer
(92.49) and 7.2% higher than D-MPNN (91.72). By benchmarking on three datasets with various
sizes, we demonstrate that pretrained deep learning surrogate models are more sample-efficient
choices to be included in the Bayesian optimization active learning framework.

Figure 5: Percentage of the top-50000 (top-0.05%) molecules in the AmpC dataset retrieved after 5
iterations of Bayesian optimization using different surrogate models. The initial training set of the
surrogate model contains 0.1% of randomly selected molecules. Each following acquisition selects
extra 0.1% molecules according to the Greedy (left) or the UCB (right) strategy. Each data point is
an average of 3 runs with different initial seeds and error bars represent one standard deviation.

2.4 Extending the application to ligand-based virtual screening

Ligand-based drug design is another important domain in the drug discovery industry. The fundamen-
tal philosophy of ligand-based drug design is that compounds similar to a known, active compound
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are more likely to be active. Rapid Overlay of Chemical Structures (ROCS) by OpenEye Inc. is a
established tool to calculate the 3D shape similarity of compounds. To extend the applicability of the
MolPAL to ligand-based virtual screening, we compute the ROCS similarity score of all compounds
in the Enamine HTS set to the original ligand in the thymidylate kinase complex[48]. MolPAL with
different surrogate models is then benchmarked on the EnamineHTS ROCS dataset for the top-1000
molecules retrieval rate. The top-1000 molecules of the EnamineHTS ROCS dataset have ROCS
score of at least 1.1771. 0.1% batch size is used for the initialization and iterative acquisition. With
the Greedy strategy (Figure 6 left), MoLFormer has the highest top-1000 retrieval rate (70.54%),
followed by MolCLR (66.30%). The pretrained models have significantly higher top-1000 retrieval
rate than LightGBM (51.88%), D-MPNN (47.40%), and RF (17.68%). On the EnamineHTS ROCS
dataset, the standard deviation of top-1000 retrieval rate across 5 runs is very large for all models
except MoLFormer when Greedy strategy is used. Specifically, the retrieval rate standard deviation at
the 5th iteration is higher than 8% for both MolCLR and D-MPNN, indicating unstable performance.
The UCB strategy effectively alleviates this problem for deep learning models (Figure 6 right).
With UCB strategy, the average top-1000 retrieval rate of MoLFormer, MolCLR, and D-MPNN is
improved to 75.78%, 70.52%, and 64.5%, respectively. The retrieval rate standard deviation after
the last iteration is also reduced to 0.66% (MoLFormer), 2.04% (MolCLR), and 4.24% (D-MPNN)
when following the UCB strategy. Given that UCB strategy can lead to higher and more consistent
top-1000 retrieval rate for the deep learning models, it is the better choice when MolPAL is applied
on ligand-based virtual screening with ROCS score.

Figure 6: Percentage of the top-1000 (top-0.05%) molecules in the EnamineHTS ROCS dataset
retrieved after 5 iterations of Bayesian optimization using different surrogate models. The initial
training set of the surrogate model contains 0.1% of randomly selected molecules. Each following
acquisition selects extra 0.1% molecules according to the Greedy (left) or the UCB (right) strategy.
Each data point is an average of 5 runs with different initial seeds and error bars represent one
standard deviation.

3 Conclusion

In this work, we demonstrate that Transformer-based language models (MoLFormer) and graph
neural network (MolCLR) after large-scale pretraining can serve as more sample-efficient surrogate
model in the Bayesian optimization active learning framework for molecule virtual screening. On
Enamine libraries with size ranging from 50 thousand to 2.1 million compounds, MoLFormer has
consistently higher top-k docking score molecules retrieval rate than the previous state-of-the-art
D-MPNN model. On the AmpC dataset containing 99.5 million compounds docked against AmpC
β-lactamase, MoLFormer and MolCLR retrieves 5.5% and 8.9% more top-50000 compounds than
D-MPNN, respectively, after exploring the same 0.6% of the whole dataset using Greedy strategy.
We demonstrate that smaller acquisition batch size can improve the top-k molecules retrieval rate.
Greedy acquisition strategy is effective in most cases, rendering it a suitable default option. The effect
of UCB strategy varies on different surrogate models and datasets. The larger uncertainty weight
in the UCB acquisition function is shown to increase the diversity of the acquired molecules at the
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cost of reduced top-k retrieval rate. At last, the application of MolPAL is extended to ligand-based
virtual screening. We curate a dataset containing the compounds in the EnamineHTS dataset and their
ROCS score to the ligand in the 4UNN complex. With only 0.6% of the EnamineHTS ROCS dataset
explored, MolFormer and MolCLR again outperforms D-MPNN by large margins in retrieving
the top-1000 similar molecules. UCB strategy is shown to be a better option on the ligand-based
virtual screening because it delivers higher and more consistent top-k retrieval rate. In conclusion,
deep learning models after pretraining on large-scale chemical space, such as MoLFormer, should
be used as surrogate models in active learning molecule virtual screening because of their higher
sample-efficiency. The application of pretrained models can benefit both the structure-based and
ligand-based domains in the field of drug discovery.
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Appendix

3.1 Bayesian optimization

The active learning is conducted using the bacthed Bayesian optimization framework implemented
by Graff et al.[30] called MolPAL. MolPAL consists of three important components including a
surrogate model, acquisition function, and an objective function (e.g. docking or ROCS). When
applied on virtual screening of a large library of molecules (denoted as a set X ), the goal of Bayesian
optimization is to select a subset x that maximizes the objective f(x), which can be the docking
score or ROCS score. Due to the relatively high computational cost of objective function, a machine
learning model parameterized by θ, fθ(·), is used as a faster surrogate to approximate the original
objective function.

At the beginning of active learning, a batch of molecules x0 are randomly selected and their cor-
responding objective values f(x0) are calculated. The surrogate model is trained using the initial
labeled training set D0 = {x0, f(x0)}. Then, for n iterations, new batches of molecules, xi, will
be selected by xi = argmax

x∈X
α(x, fθ(x)), where 0 < i ≤ n is the i-th iteration and α(·) is

the acquisition function. After each iteration of selection, the training set will be augmented as
Di = {Di−1, (xi, f(xi))} and the surrogate model will be retrained using Di. In this work, n = 5 is
set for all benchmarks. The top-k molecules retrieval rate is calculated as the percentage of real top-k
molecules being included in the Dn. Retrospective studies are conducted on all datasets, meaning that
docking score of all molecules are pre-calculated and f(x) is a oracle lookup function that retrieves
the docking or ROCS score during the active learning process.

3.2 Acquisition functions

Based on the benchmarks in the work of Graff et al.[30], we test two of the best performing acquisition
functions including the greedy strategy:

αgreedy(x) = µ̂(x) (1)

and the upper confidence boundary (UCB) strategy[49, 50]:

αUCB(x) = µ̂(x) + βσ̂(x) (2)

where µ̂(x) and σ̂(x) are the predicted docking or ROCS score and predicted uncertainty of a
molecule x, respectively. Since new batches are selected by maximizing the acquisition function,
docking scores are multiplied by -1. β, set toa default value of 2 in our work, is a hyperparameter
that determines the weight of uncertainty when augmenting the surrogate model training data.

3.3 Surrogate models

Five surrogate models benchmarked in this work are Molecular Language Transformer[39] (MoL-
Former), directed message passing neural network[47] (D-MPNN), graph isomorphism network[46]
pretrained using molecular contrastive learning[41] (MolCLR), LightGBM[51], and Random
Forest[52] (RF). Deep learning models, including MoLFormer, D-MPNN, and MolCLR, consist
of two components, a feature extractor and a prediction head. The feature extractor (Transformer
encoder in MoLFormer and graph neural network in D-MPNN and MolCLR) learns a molecular
representation from the input SMILES. The prediction head is a two-layer fully connected neural
network that predicts the docking score and uncertainty using the learned molecular representation.
For LightGBM and RF, each molecule is represented by a 2048-bit atom-pair fingerprint[53] with
minimum radius of 1 and maximum radius of 3. When greedy acquisition function is used, the all
surrogate models predict only the docking score of each molecule and are trained with the mean
squared error (MSE) loss. When the UCB acquisition function is used, neural network based surrogate
models predict both the docking score and the uncertainty (variance), and is trained on the gaussian
negative log-likelihood loss[54, 55]:

L(y, ŷ, σ̂2) =
1

2
(log σ̂2 +

(ŷ − y)2

σ̂2
) (3)

where the y and ŷ are the ground truth and predicted docking or ROCS score, respectively. σ̂2 is the
predicted variance which is clamped to 10−5 for training stability. For random forest based models
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(RF and LightGBM), the uncertainty is calculated as the variance of predictions of all decision trees
in the ensemble and they are always trained using the MSE loss function.

MoLFormer[39] is a transformer-based[56] model. It receives tokenized[57] SMILES string as input
and generates molecular representation by learning the intrinsic spatial relationships between atoms
in a molecule. Linear attention mechanism[58] and rotary position embedding[59] are adopted over
the regular quadratic attention to improve the computation efficiency of the model. MoLFormer
has been pretrained on a ultra-large 1.1 billion small molecule dataset combining ZINC[60] and
PubChem[61] using the mask-language-modeling technique[62, 63] (Figure 1b). In this work, we
use the MoLFormer-XL variant proposed in ref[39] which consists of 12 linear attention layer
with 12 heads in each layer and a hidden dimension of 768. Molecular representation learned by
MoLFormer is the average of the embeddings of all input tokens. The prediction head of MoLFormer
has hidden dimension as 768 with gaussian error linear unit[64] activation and 0.1 rate of dropout[65].
LAMB[66] optimizer is used to enable large batch training. The training batch size is 600 and
learning rate is fixed at 1.6× 10−4.

D-MPNN and MolCLR pretrained graph isomorphism network[46] are variants of the graph neural
network[67] (GNN). They directly take the molecular graph, in which each atoms are represented as
nodes and bonds as edges, as input thanks to their GNN architecture. Both model learn molecular
representations through the message passing process. In message passing, the feature vector of
each node in the molecular graph is updated by aggregating message from neighboring nodes.
Through multiple aggregation update operations, the graph-level feature or molecular representation
is calculated by a mean-pooling readout function over all node features in the graph. D-MPNN and
MolCLR differs from each other by their unique aggregation update operation, which are detailed in
ref[47] and ref[46, 41], respectively. MolCLR is pretrained on approximately 10 million molecules
from PubChem[61] using contrastive learning strategy[68] (Figure 1c). For fair comparison, we use
the default architecture setting of both the D-MPNN (3 graph layers and hidden size as 300) and
MolCLR (5 graph layers, embedding size as 300, and feature size as 512). The prediction head of
D-MPNN has hidden size of 300 and ReLU activation function. Following ref[30], D-MPNN is
trained 50 epochs in batches of 50 using Adam[69] optimizer with Noam learning rate scheduler[56]
(10−4, 10−3, and 10−4 as the initial, maximum, and final learning rate, respectively). The prediction
head of MolCLR has hidden size of 256 and 128 for the first and second layer, respectively, and
ReLU activation function. MolCLR is trained 50 epoches in batches of 32 using Adam[69] optimizer.
The learning rate is 0.0002 and 0.0005 for the pretrained graph neural network and prediction head,
respectively. RDKit[70] is used to convert SMILES to molecular graph. Molecules acquired at each
iteration are split by 80%-20% to the training and validation set. Early stopping strategy with patient
value of 10 on validation loss is adopted during the training of all neural network based models.

RF and LightGBM are decision tree based ensemble methods. RF is implemented using the
scikit-learn[71] package. The n_estimator value is set to 100, max_depth set to 8, and
min_samples_leaf set to 1. LightGBM is implemented using its dedicated python package[51].
The n_estimator value for LightGBM is set to 100, while the max_depth is unlimited.
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