
TopoPool: An Adaptive Graph Pooling Layer
for Extracting Molecular and Protein Substructures

Mattson Thieme
Northwestern University,

AbbVie

Majdi Hassan
Mila Quebec,

AbbVie

Chetan Rupakheti
AbbVie

Kedar Thiagarajan
Northwestern University

Abhishek Pandey
AbbVie

Han Liu
Northwestern University

Abstract

Within molecules and proteins, discrete substructures affect high level properties
and behavior in distinct ways. As such, explicitly locating and accounting for
these substructures is a central problem when learning molecular or protein rep-
resentations. Typically represented as graphs, this task falls under the umbrella
of graph pooling, or segmentation. Given the highly variable size, number, and
topology of these substructures, an ideal pooling algorithm would would adapt on
a graph-by-graph basis and use local context to locate optimal pools. However, this
poses a challenge where differentiability is concerned, and each of the learnable
graph pooling methods proposed to date must make strong a priori assumptions
in regards to the number or size of the learned pools. As such, demand remains
for a graph pooling algorithm that can maintain differentiability while retaining
adaptability in the size and number of learned pools. To meet this demand, we
introduce the Topographical Pooling Layer (TopoPool): a differentiable, hierar-
chical graph pooling layer that learns an arbitrary number of varying sized pools
without making any a priori assumptions about their number or size. Additionally,
it naturally uncovers only connected substructures, increasing the interpretability
of the learned pools and obviating the need for exogenous regularizers to enforce
connectedness. We evaluate TopoPool on diverse molecular and protein property
prediction tasks, where we achieve competitive performance against existing meth-
ods. Taken together, TopoPool represents a novel addition to the graph pooling
toolbox and is particularly relevant to areas such as drug design, where locating and
optimizing discrete, connected molecular substructures is of central importance.

1 Introduction

Graph neural networks (GNNs) have become the de facto models for learning representations of
graph-structured data and have revolutionized structural biology (Senior et al., 2020), drug design
(Gilmer et al., 2017), and molecular property prediction (Wu et al., 2019). To facilitate graph-level
predictions, where node and edge features must be collapsed into a single graph-level feature, a wide
variety of learnable graph coarsening methods have been introduced (Gao & Ji, 2021; Grattarola
et al., 2021; Ying et al., 2018; Lee et al., 2019; Diehl, 2019) each with their own set of trade-offs.
Heuristic pooling methods often fail to capture the complex structural information in the graph, while
learnable methods are often expensive and sensitive to the specific choice of parameters. Learnable
methods must also contend with maintaining differentiability. To do so, methods to date have had
to make strong a priori assumptions about either the number or size of the learned pools, a severe

The NeurIPS 2023 Workshop on New Frontiers of AI for Drug Discovery and Development (AI4D3 2023), New
Orleans, LA, USA, 2023.

disadvantage in domains where the optimal pool size is either unknown or variable across examples.
The pharmacokinetic properties of molecules, for example, depend on discrete, connected molecular
substructures that vary greatly in size, shape, and relative position within the molecule (Gasteiger,
2003). In this setting, an ideal graph pooling algorithm would be able to dynamically adapt to the
input graphs and learn both the size and the number of clusters on a graph-by-graph basis.

In this work, introduce the Topographic Pooling layer (TopoPool). TopoPool is the first differentiable
graph pooling layer that 1) dynamically adapts to the input graphs and learns the optimal number and
size of pools on a graph-by-graph basis. TopoPool also naturally locates only connected substructures,
obviating the need for exogenous regularizers and loss terms required by other learnable methods to
enforce the notion that nearby nodes should be pooled together. To our knowledge, as of the time
of writing, no other graph pooling approaches are adaptive in this way. Each either sets an upper
limit on the number of clusters (Ying et al., 2018; Jo et al., 2021) samples a pre-defined number/ratio
of ranked nodes or edges (Ranjan et al., 2019; Diehl, 2019; Jo et al., 2021; Gao & Ji, 2021; Baek
et al., 2021), and requires exogenous regularizers to enforce connectivity in the learned pools. Our
contributions are as follows:

• We introduce TopoPool, the first hierarchical graph pooling algorithm that pools entire
graphs without making assumptions about the number or size of the learned pools.

• In experiments on real-world molecular datasets, where graph pooling is particularly chal-
lenging, we demonstrate competitive performance against the existing approaches.

• We provide an efficient PyTorch implementation of the TopoPool layer that can be easily
integrated into existing GNN pipelines.

Our choice to focus on molecular datasets was motivated by the field of medicinal chemistry, where
the presence and relevance of pharmacophores (Güner & Bowen, 2014; Schueler, 1961) serves as a
prime example of the importance of preserving connected substructures in graph-based molecular
representations. Pharmacophores are something like molecular phonemes: canonical ensembles of
atoms used to construct larger molecules. The particular structure and position of the pharmacophores
within a molecule is critical for determining a molecules’ biological activity (Putz et al., 2016). Thus,
understanding how these substructures affect pharmacokinetic properties of a molecule is crucial for
drug discovery, design, and optimization (Seidel et al., 2020).

2 Preliminaries

We denote a graph G with nodes V ∈ {v0, . . . , vN} and edge set E as G(V, E). Graph pooling, or
coarsening, is the process of mapping |V | = N nodes and onto a new set of nodes |V ′| = M, where
M ≤ N . To accomplish this, graph pooling operators possess some combination of the following
three functions: selection, reduction, and connection (SRC) (Grattarola et al., 2021). Selection is
process of grouping the input nodes, reduction is process of aggregating and compressing those
groups into new representations, and connection is the process of reconnecting the clustered nodes
given the original edge set E . The algorithmic contributions of TopoPool primarily lie in the Selection
phase, but we also perform reduction and connection to form a fully self-contained graph pooling
operator.

Being a differentiable graph pooling layer, TopoPool is designed to be used alongside GNN layers.
However, TopoPool is agnostic to the particular GNN aggregation mechanism, and we can abstract
this portion away, denoting an arbitrary GNN layer as GNN(V, E) : x ∈ RN×d → RN×d′

, where d′

is the dimension of the transformed node representation. As outlined in the following section, it is
these transformed node representations, alongside the edge set, that the TopoPool layer ingests.

3 The Topographical Pooling Layer (TopoPool)

The TopoPool layer is a differentiable, hierarchical graph pooling algorithm for locating and aggre-
gating an arbitrary number of discrete, connected substructures in an input graph. It was motivated
by the desire to locate and extract pharmacophores from molecular graphs, and inspired by the clean
boundaries described in topographic maps. In this section, we describe how the TopoPool layer
differentiably coarsens a graph without making any assumptions about the number or size of the
clusters.

2

Figure 1: A high level overview of the TopoPool algorithm. In panel (1) we generate the scores which,
in conjunction with the graph structure, define the ‘topography’ over the graph. Panel (2) shows how,
once we’ve found the peaks in the topography, the pools are located by descending from the peaks
until we reach a trough. This allows the layer to locate pools of variable size that are necessarily
connected. Finally, panel (3) shows how the pooled clusters are reduced to the coarsened graph
G′. Note that we visualize the algorithm here on a 1D chain graph for clarity only. The TopoPool
algorithm can be applied on graphs with arbitrary topologies.

TopoPool takes as input a vector of node representations h ∈ RN×d and the edge set E , and yields a
new graph with nodes V ′ with features h′ ∈ RK×d and edges E ′, where K is the number of learned
clusters.

Select: The first step in the TopoPool algorithm is to generate the topography (Figure 1, (1)). Using a
single linear layer fθ(·) ∈ Rd×1, TopoPool maps the node representations h ∈ RN×d onto a scalar
valued graph signal fθ(h) = s ∈ RN×1. These scalar values are what define the graph signal that,
in conjunction with the network structure, we treat like a topography over the graph. Once s is
generated, we locate all the peak nodes with a simple message passing operation, returning True in a
binary mask for all si : si > sj ,∀j ∈ Ni, where Ni is the one-hop neighborhood of vi. We denote
the set of all such local peaks as P , where |P | = K,K ≤ N , and each peak node vk ∈ P defines the
source of its own unique cluster. Then, from each source node vk, we expand and descend, growing
each cluster outward while the neighboring node scores sj ≤ sk (Figure 1, (2)). We refer to the new
clustered nodes by their peak node of origin, k, and accumulate constituent members of cluster k in
a set Ck. In this descent process, nodes are assigned to clusters on a first-come, first-served basis.
However, if some node is equidistant from multiple peaks, and therefore reached at the same iteration
in the descent phase, it is assigned to both clusters, as shown in Figure 1, panel (2). Experimentally,
we found that allowing multiple clusters to share nodes does not impact performance. Therefore, for
simplicity, we do not penalize the double counting of these shared nodes.

Reduce: Once clusters have been located and every node assigned, members of each cluster k
are aggregated (Figure 1, (3)) with a max pool over their features, yielding a representation hk =
maxi(hi∈Ck

). Each cluster representation hk is then scaled by the score sk on its peak node vk. This
step is important for a few reasons: 1) it allows gradients to flow back to the linear layer fθ(·), 2) it
improves prediction performance by scaling the influence of each cluster, and 3) it adds a degree of
interpretability be clearly showing the relative differences in importance between the learned clusters.
To ensure consistency across graphs with varying numbers of clusters, we normalize these peak
scores sk over each graph with a softmax, such that the final representation for the kth pool becomes:

hk =
esk∑

i∈P

esi
·max

i
(hi∈Ck

), hk ∈ R1×d (1)

And the node representations for the final pooled graph are the concatenation of all the pooled
representations: h′ ∈ RK×d.

Connect: To connect the learned clusters and generate the new edge set E ′, we simply draw an
undirected edge between two clusters if there existed at least one edge between their constituent
nodes in the input edge set E .

A note on scalability: The TopoPool layer is inherently scalable as complexity of the expand portion
algorithm is the same as BFS. The cost for this step is O(N +E), where N and E are the number of
nodes and edges in each graph, respectively. We note however that this is the worst case, where only

3

Dataset Task Graphs Nodes Edges Features Classes

PPBR Regression 1,614 28.8 91.7 39 1
Caco-2 Regression 906 29.3 92.4 39 1
MUTAG Classification 188 17.9 39.6 7 2
PROTEINS Classification 1,113 39.1 145.6 3 2
ENZYMES Classification 600 32.6 124.3 3 6

Table 1: Molecular property prediction datasets used in our experiments. The ‘Nodes’
and ‘Edges’ columns reflect the average number of nodes and edges per graph.

a single cluster is learned. In most cases, the actual runtime will be O(CMAX + E), where CMAX

is the size of the largest learned cluster, and typically CMAX << N . This runtime is on par with
benchmark graph pooling methods (Section 4.2) and ours runs in comparable time.

4 Experiments

In our experiments, we aim to answer the following questions:

Q1 - Is TopoPool competitive with existing learnable and heuristic graph pooling operators?

Q2 - Can the TopoPool layer be easily integrated into existing GNN pipelines?

Q3 - Are the learned clusters interpretable and consistent across examples?

Following the example of (Lee et al., 2019; Ying et al., 2018; Diehl, 2019; Ranjan et al., 2019), we
benchmark our model on molecular and protein property prediction tasks. High level descriptions of
the datasets can be found in Table 1.

High level descriptions of the datasets can be found in Table 1.

Two of our datasets, PPBR and Caco-2, come from the Therapeutic Data Commons (TDC) (Huang
et al., 2022), a cross-modality repository of therapeutic data designed to evaluate AI capabilities
across the stages of discovery. Molecules in each dataset are stored as SMILES strings and converted
to a graph structure before training using the RDKit library. As edges in molecular graphs represent
bonds, they are all undirected. Node features in the TDC datasets are a concatenation of 1-hot vectors
expressing the atom type, degree, formal charge, chiral tag, and aromaticity; 39 features in all per
node. For both datasets, we report the mean absolute error (MAE) on the test set.

Additionally, as the real-world drug discovery process yields increasingly diverse and increasingly
novel compounds over time (Feinberg et al., 2020) our objective must be to learn a model that
generalizes not only to new molecules, but to molecules composed of unseen substructures. Therefore,
to make our evaluations as realistic as possible, we use the canonical scaffold splits (defined in the
TDC databases for all tasks) that force the training and testing sets to have maximally dissimilar
molecular structures.

PPBR (noa) stands for Plasma Protein Binding Rate, and the PPBR dataset labels drug molecules
by the percentage of that drug bound to plasma proteins in the blood. This rate inversely affects the
efficiency with which a drug is delivered to a site of action and is a measure of distribution, or how a
drug moves between the various tissues of the body.

Caco-2 (Wang et al., 2016) labels drug molecules by the rate of the drug passing through Caco-2 cells
(a human colon epithelial cancer cell line) and approximates the rate at which the drug permeates
through intestinal tissue. Fundamentally, this expresses a measure of absorption of a drug molecule.

MUTAG: (Debnath et al., 1991) is a widely used chemical dataset in which each molecule is labeled
as either mutagenic or non-mutagenic, representing whether the compound has a mutagenic effect on
the germ cells of the bacterium Salmonella typhimurium.

PROTEINS (Borgwardt et al., 2005) is a dataset of protein graphs labeled as either enzymes or
non-enzymes. In contrast to the other datasets, nodes in PROTEINS represent amino acids and two
nodes are connected (again via undirected edges) if the amino acids are less than 6 Angstroms apart.

4

ENZYMES: (Borgwardt et al., 2005) Like the proteins dataset, the ENZYMES dataset consists
of protein structures. Unlike the other tasks, the ENZYMES dataset is multiclass classification
problem. Each protein belongs to one of six enzyme classes based on the chemical reactions they
catalyze. Given its complexity and real-world relevance, the ENZYMES dataset is often used to
evaluate the performance of graph-based algorithms, particularly GNNs. The multiclass nature of the
classification task also makes it a useful dataset for testing the ability of the TopoPool layer to handle
more complex tasks.

4.1 Model Configuration

While the TopoPool layer is capable of hierarchical pooling, we demonstrate it here as a single pooling
layer following graph convolution layers. We do for simplicity’s sake as adding another pooling layer
added complexity without materially improving performance. The base model, as well as all training
and hyperparameters, are identical in all our experiments, with only the final pooling layer being
swapped out. The GNN layers in our model are based on the GCN architecture (Kipf & Welling,
2016), as it is widely used, efficient and performed well in our experiments. However, we note that the
TopoPool layer can be applied in conjunction with any GNN aggregation layer, and additionally report
unoptimized performance results with GAT (Veličković et al., 2017) and GraphSAGE (Hamilton
et al., 2017) as the backbone in Figure 2. Our model architecture is straightforward, with three graph
convolution layers, a single graph pooling layer, and three linear readout layers to map the learned
representation onto the final prediction. As it is well known that incorporating global information
helps in pharmacokinetic prediction models (Feinberg et al., 2020) we concatenate node features in
each layer with an average pool over the batch dimension. We found that the addition of LayerNorm
(Ba et al., 2016) after each convolutional layer helped to stabilize training by stabilizing the gradients
flowing to the linear layer fθ(·). After each convolutional layer, we concatenate batch-wise max and
average pools over the node features. These concatenated features act like skip connections and are
summed together to form the input to the final readout layers.

Training is performed with the Adam Optimizer (Kingma & Ba, 2014), learning rate 5e-3, learning
rate decay, and patience of 200 epochs. We use a batch size of 128 for all experiments and randomly
shuffle the training and validation sets. Each model configuration was tested over ten independent
trials and we report both the average and standard deviation of the performance over these trials in
Table 2. All training and model details are available in our GitHub1.

4.2 Benchmark Methods

Graph Pooling methods can be broadly categorized into global or hierarchical pooling. Global
methods produce graph-level features by aggregating node-level, and occasionally edge-level, features
across the entire graph, usually via a sum, mean, or max aggregation. On the other hand, hierarchical
pooling methods implement some version of the SRC framework (Grattarola et al., 2021), reducing a
graph to one with fewer nodes and edges, rather than collapsing it into a single graph-level feature
and discarding the edges.

To date, all graph pooling algorithms, including learnable algorithms, depend on some heuristics to
specify the size of the clusters, number of clusters, or cluster thresholds (Lee et al., 2019; Gao & Ji,
2021; Ying et al., 2018; Diehl, 2019; Grattarola et al., 2021). Unfortunately, this is antithetical to
need to locate clusters of unknown size and shape, such as those corresponding to pharmacophores in
a drug molecule. In our experiments, we compare TopoPool against a range of heuristic and learnable
graph pooling operators outlined below.

No Pool refers to a simple GNN model in which the final graph-level representation is obtained with
a simple max pool over all the learned node representations.

TopK (Gao & Ji, 2021) The authors propose a graph pooling method based on the U-Net architecture
(Ronneberger et al., 2015), a popular model in the field of semantic segmentation. The method
constructs hierarchical graphs and captures the corresponding nodes’ representations at different
levels. Downsampling is performed by the TopK pooling layer, which drops nodes based on a
learnable projection score and a hyperparameter that specifies the ratio of nodes to retain.

1https://github.com/MattsonThieme/TopoPool

5

https://github.com/MattsonThieme/TopoPool

Base Pooling
Dataset

ENZYMES(↑) PROTEINS(↑) MUTAG(↑) Caco2(↓) PPBR(↓)

GCN

Global 0.410(0.094) 0.727(0.055) 0.732(0.095) 0.444(0.083) 8.92(0.33)
TopK 0.395(0.081) 0.746(0.029) 0.689(0.128) 0.407(0.097) 8.88(0.32)
SAG 0.405(0.059) 0.727(0.032) 0.705(0.100) 0.412(0.070) 8.85(0.31)
DiffPool 0.410(0.079) 0.737(0.023) 0.705(0.155) 0.389(0.044) 8.86(0.53)
EdgePool 0.403(0.091) 0.762(0.039) 0.768(0.042) 0.395(0.061) 8.78(0.35)
ASAPool 0.392(0.052) 0.750(0.037) 0.774(0.094) 0.455(0.139) 8.78(0.61)
TopoPool 0.427(0.080) 0.759(0.024) 0.779(0.131) 0.382(0.046) 8.63(0.43)

GAT TopoPool 0.433(0.032) 0.771(0.037) 0.753(0.120) 0.450(0.055) 8.70(0.34)
SAGE TopoPool 0.438(0.051) 0.747(0.041) 0.811(0.120) 0.376(0.031) 8.96(0.21)

Table 2: Performance on the held out test set, best is shown in bold and second best is underlined. For
ENZYMES, PROTEINS and MUTAG, we report the classification accuracy on the test set, and for
Caco2 and PPBR we report the MAE. Reported values reflect the average and standard deviation in
the performance over 10 independent training runs. Performance results with GAT and GraphSAGE
as the GNN backbone are shown in italics as hyperparameters for these model configurations were
not optimized for the given endpoints. We present them to show that TopoPool can be used with
arbitrary GNN layers, as well as to demonstrate the reasonable performance TopoPool can achieve
even before hyperparameter optimization.

SAG (Lee et al., 2019), similar to TopK, the SAG pooling layer identifies the most informative nodes
by assigning an importance score to each node in a graph using self-attention, then selecting the nodes
with the highest scores to form a coarsened graph. Here again, the value of k is a hyperparameter that
must be specified a priori.

DiffPool (Ying et al., 2018) is a differentiable graph coarsening method that performs a soft cluster
assignment of the nodes to a predetermined number of clusters. While DiffPool is capable of using
only a subset of those predetermined number of nodes, the upper limit must still be specified a
priori. Additionally, as there are no architectural properties enforcing the notion that nearby nodes be
clustered together, they also implement a supplementary link-prediction objective to encourage this
behavior.

EdgePool (Diehl, 2019) introduces a sparse, learnable pooling method for graphs based on edge
contraction. They first compute a score for each edge, then sort all edges by their score, successively
choosing the edges with the highest scores whose two nodes have not yet been part of a contracted
edge. While effective, the authors note the disadvantage that each step roughly halves the number of
nodes in the graph, and that this cannot be modified by the user.

ASAPool (Ranjan et al., 2019) introduces a novel GNN-based attention network to generate im-
portance scores for each node in a given graph. Similar to DiffPool, it then learns a soft cluster
assignment for nodes at each layer and uses these assignments to locate and pool subgraphs. However,
while this addresses some issues in the graph pooling literature, it still samples substructures using a
variant of top-k selection, where the pooling ratio k must specified a priori.

5 Results and Discussion

Table 2 contains performance results for the benchmark methods and TopoPool on our datasets.
Values for GAT/SAGE + TopoPool are shown in italics as these were not optimized for the given
configuration. We present them simply to demonstrate the capacity to implement TopoPool with
any GNN layer, as well as the ability for TopoPool to achieve reasonable performance even before
hyperparameter optimization.

To answer the questions set forth in Section 4:

6

Figure 2: Example clusters learned on the Caco2 Permeability endpoint. Each cluster is colored
according to the score sk on its peak node vk, which reflect the relative importance of each cluster to
the given endpoint. We note the clearly delineated clusters that cleanly subsume discrete molecular
structures, as well as the consistency of the pools across molecules.

A1 - Given the performance in Table 2, TopoPool is very competitive with the existing learnable
and heuristic graph pooling algorithms, achieving superior performance on all but one
dataset.

A2 - TopoPool can be easily integrated into existing GNN pipelines, and we report good perfor-
mance using a GAT and GraphSAGE backbone even before hyperparameter optimization in
these configurations.

A3 - As we discuss below and show in Figure 2, the learned clusters are highly interpretable
while also being consistent across examples.

Performance: On all but one dataset, TopoPool achieves superior performance to every benchmark
method, and on PROTEINS it achieves only a slightly lower accuracy than EdgePool. Additionally,
standard deviations in the performance are in line with all the other methods. Also worth noting is
that methods like TopK, which retain only the K highest ranked nodes, often lead to even poorer
performance than global pooling, implying that there is utility in retaining information from every
node.

Training dynamics: Like all learnable graph pooling methods, the exact pools extracted will depend
on the particular initialization. However, we do observe that the relative ranking of the substructures,
for example, the carboxyl group (the trigonal planar functional group colored yellow in (2) and (3))
vs. the aromatic rings (the carbon rings colored purple in all three molecules) is preserved across
most of the independent trials.

In regards to training time, our implementation uses advanced indexing in PyTorch for all but the
expand and descend operation, resulting in training times that are comparable with those of DiffPool
and EdgePool. The number of clusters learned is also consistent across independent trials, with the
model gradually converging on a similar number as training progresses.

Cluster Interpretability: We can see that clusters are clearly delineated, subsume discrete molecular
structures, and similar structures are scored similarly across molecules. We note that the two aromatic
rings on either side of the molecule in (2), while scored and colored similarly, are distinct clusters.
Also of note is that the relative importance of the carboxyl group is conserved across (most, not
all) molecules in the Caco2 Permeability dataset. The relative differences in the scores of similar
structures across examples is not necessarily of concern, as these scores are relative within a given
molecule, and the structural context for each molecule will be different.

Consistency across examples: As we can see in Figure 2, the aromatic rings are, for the most part,
scored lower than the substructures containing peripheral oxygens. This is consistent across examples
in the test set for this endpoint, and we observe a similar behaviors across Caco2 and PPBR (the two
molecular datasets).

Areas for improvement: Learning a variable number of nodes of variable size presents challenging
normalization problems, particularly as it relates to how the node representations within a given
cluster are aggregated. We tried a number of methods with varying success across datasets. We
arrived at the MAX aggregation, as noted in Equation (1), as it achieved good average results across
our datasets. However, we note that this is a design choice that can and should be adjusted based on

7

the unique demands of each dataset. Additionally, when considering molecules, there are additional
symmetries that the algorithm may be able to exploit. As it stands, the TopoPool algorithm originates
a unique cluster from each local maxima in the node scores s. However, due to common symmetries
in many molecules, this often results in structures with bilateral symmetry being split into two
symmetrical pools. It may improve performance to, for example, merge symmetric, adjacent pools
into a single pool. Finally, the learned scores are sensitive to initialization. However, the learned
clusters appear to be less so. As our model has a readout layer that maps the clustered representations
onto a single value, the scores on each learned cluster have to adapt alongside the weights in the
readout layers and will remain sensitive to initialization. This is a limitation of the method and a
problem worthy of further study.

6 Conclusion

Here, we presented TopoPool, the first learnable, hierarchical graph pooling layer capable of coarsen-
ing an entire graph without making assumptions about the size or number of clusters. It also innately
uncovers connected substructures, improving interpretability while obviating the need for exogenous
forcing functions or regularizers to ensure connectedness within the pools. We demonstrated its
efficacy on real-world molecular and protein property prediction datasets, where it outperformed
existing graph pooling algorithms on all but one. We additionally showed that even un-optimized
implementations can achieve decent performance. Finally, we provide an efficient, open source
implementation of the algorithm built with PyTorch Geometric (Fey & Lenssen, 2019). Given its
differentiability, novelty and efficacy, we believe that TopoPool represents a useful addition to the
GNN toolkit and a step towards improving molecular and protein representations.

References
Document: Experimental in vitro DMPK and physicochemical data on a set of publicly disclosed

compounds. https://www.ebi.ac.uk/chembl/document_report_card/CHEMBL3301361/.
Accessed: 2023-5-16.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. July 2016.

Jinheon Baek, Minki Kang, and Sun Ju Hwang. Accurate learning of graph representations with
graph multiset pooling, June 2021.

Karsten M Borgwardt, Cheng Soon Ong, Stefan Schönauer, S V N Vishwanathan, Alex J Smola, and
Hans-Peter Kriegel. Protein function prediction via graph kernels. Bioinformatics, 21 Suppl 1:
i47–56, June 2005.

A K Debnath, R L Lopez de Compadre, G Debnath, A J Shusterman, and C Hansch. Structure-
activity relationship of mutagenic aromatic and heteroaromatic nitro compounds. correlation with
molecular orbital energies and hydrophobicity. Journal of medicinal chemistry, 34(2):786–797,
February 1991.

Frederik Diehl. Edge contraction pooling for graph neural networks. arXiv.org, 2019.

Evan N Feinberg, Elizabeth Joshi, Vijay S Pande, and Alan C Cheng. Improvement in ADMET
prediction with multitask deep featurization. Journal of medicinal chemistry, 63(16):8835–8848,
August 2020.

Matthias Fey and J E Lenssen. Fast graph representation learning with PyTorch geometric. ArXiv,
2019.

Hongyang Gao and Shuiwang Ji. Graph U-Nets. IEEE transactions on pattern analysis and machine
intelligence, PP, May 2021.

J Gasteiger. Chemoinformatics. Wiley-VCH, Weinheim, 2003.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. April 2017.

8

https://www.ebi.ac.uk/chembl/document_report_card/CHEMBL3301361/

Daniele Grattarola, Daniele Zambon, Filippo Maria Bianchi, and Cesare Alippi. Understanding
pooling in graph neural networks. October 2021.

Osman Güner and J Philip Bowen. Setting the record straight: the origin of the pharmacophore
concept. 54, 2014.

William L Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large graphs.
June 2017.

Kexin Huang, Tianfan Fu, Wenhao Gao, Yue Zhao, Yusuf Roohani, Jure Leskovec, Connor W Coley,
Cao Xiao, Jimeng Sun, and Marinka Zitnik. Artificial intelligence foundation for therapeutic
science. Nature chemical biology, 18(10):1033–1036, October 2022.

Jaehyeong Jo, Jinheon Baek, Seul Lee, Dongki Kim, Minki Kang, and Sung Ju Hwang. Edge
representation learning with hypergraphs. June 2021.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. December 2014.

Thomas N Kipf and Max Welling. Semi-Supervised classification with graph convolutional networks.
September 2016.

Junhyun Lee, Inyeop Lee, and Jaewoo Kang. Self-Attention graph pooling. April 2019.

Mihai V Putz, Corina Duda-Seiman, Daniel Duda-Seiman, Ana-Maria Putz, Iulia Alexandrescu,
Maria Mernea, and Speranta Avram. Chemical structure-biological activity models for pharma-
cophores’ 3d-interactions. International journal of molecular sciences, 17(7):1087, 2016.

Ekagra Ranjan, Soumya Sanyal, and Partha Pratim Talukdar. ASAP: Adaptive structure aware
pooling for learning hierarchical graph representations. November 2019.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional networks for biomedical
image segmentation. May 2015.

Fred Warren Schueler. Chemobiodynamics and drug design. Academic Medicine, 36(3):285–286,
1961.

Thomas Seidel, Oliver Wieder, Arthur Garon, and Thierry Langer. Applications of the pharmacophore
concept in natural product inspired drug design. Molecular Informatics, 39(11):2000059, 2020.

Andrew W Senior, Richard Evans, John Jumper, James Kirkpatrick, Laurent Sifre, Tim Green,
Chongli Qin, Augustin Žídek, Alexander W R Nelson, Alex Bridgland, Hugo Penedones, Stig
Petersen, Karen Simonyan, Steve Crossan, Pushmeet Kohli, David T Jones, David Silver, Koray
Kavukcuoglu, and Demis Hassabis. Improved protein structure prediction using potentials from
deep learning. Nature, 577(7792):706–710, January 2020.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. October 2017.

Ning-Ning Wang, Jie Dong, Yin-Hua Deng, Min-Feng Zhu, Ming Wen, Zhi-Jiang Yao, Ai-Ping Lu,
Jian-Bing Wang, and Dong-Sheng Cao. ADME properties evaluation in drug discovery: Prediction
of caco-2 cell permeability using a combination of NSGA-II and boosting. Journal of chemical
information and modeling, 56(4):763–773, April 2016.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S Yu. A
comprehensive survey on graph neural networks. January 2019.

Rex Ying, Jiaxuan You, Christopher Morris, Xiang Ren, William L Hamilton, and Jure Leskovec.
Hierarchical graph representation learning with differentiable pooling. In Proceedings of the 32nd
International Conference on Neural Information Processing Systems, NIPS’18, pp. 4805–4815,
Red Hook, NY, USA, December 2018. Curran Associates Inc.

9

	Introduction
	Preliminaries
	The Topographical Pooling Layer (TopoPool)
	Experiments
	Model Configuration
	Benchmark Methods

	Results and Discussion
	Conclusion

