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Abstract

Atomic models, which directly represent molecular structural variations (i.e., con-
formation), have received increasing attention in the field of cryo-electron mi-
croscopy (cryo-EM) heterogeneity analysis. However, the nonconvex landscape
of the structural space (the space of atomic coordinates) poses a significant chal-
lenge to finding a physical-plausible structure. In this paper, we address this chal-
lenge by proposing a novel approach, named cryoSTAR, with the aim of recon-
structing atomic models from cryo-EM images. Our approach is motivated by the
observation that weak regularization allows atomic models to be excessively flex-
ible in the search space, resulting in a loss of local structural fidelity, while strong
regularization tends to trap atomic models in the neighborhood of the initial struc-
ture, limiting their ability to explore the conformational landscape effectively. To
strike a balance, we introduce adaptive structural regularization at the atomic level
to modulate the reconstruction process. We relax the flexible region adaptively to
allow for greater conformational changes. Our method achieves the lowest RMSD
(up to a maximum decrease of 7.14Å) on a synthetic dataset, and uncovers reason-
able dynamics on an experimental dataset, highlighting its generalizability across
different protein systems. Our work sheds light on the potential of atomic mod-
els as an alternative to traditional volumetric density maps for cryo-EM heteroge-
neous reconstruction.

1 Introduction

Cryo-electron microscopy (cryo-EM) is a structural biology tool that can directly observe the con-
formational heterogeneity of biomolecules at the single particle level [1]. In cryo-EM, each dataset
consists of numerous 2D projections of one or more 3D structures with potentially different confor-
mations. Therefore, cryo-EM datasets can provide rich heterogeneous information at the conforma-
tional level.

Traditional approaches focus on solving cryo-EM reconstruction in volumetric space by voxelizing
the electronic density map into discrete 3D grids [2, 3, 4]. When dealing with heterogeneity, many
of them assume a discrete number of classes and assign each particle to a single class [5]. Recently,
there have been serveral algorithms that are designed to tackle heterogeneity in a continuous manner.
For example, 3DVA [6] describes the variability within the dataset as a linear combination of a few
bases. To achieve more expressive power with nonlinearity, deep learning based methods have been
developed to map such heterogeneity to nonlinear manifold embeddings. Notably, cryoDRGN [7,
8, 9] uses a variational autoencoder (VAE) [10] approach to map heterogeneity within the dataset
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Figure 1: Reconstructed atomic structures versus the strength of regularization. Given the closed
state as the initial model (pdb: 1ake), the goal is to recover the open state (pdb: 4ake). (i) A
method with weak regularization (only enforcing backbone continuity [13, 14]) may destroy the
local structure (e.g., α-helix, as highlighted) of a well-folded protein. (ii) We introduce a balance
point which can reconstruct the open state while preserving its local structure. (iii) The interlock [18]
problem prevents the NMA-based method [15, 17, 19] from finding the “closed-to-open” transition,
despite its success in finding the “open-to-closed” transition.

to a latent space. A generative decoder is used to generate the 3D volume given a sampled point
from the latent space. Most of these volumetric methods do not explicitly model the motion of
flexible regions, which often leads to density vanishing and artifacts while sampling in the latent
space. 3DFlex [11] learns an explicit 3D deformation field, while preserving local geometry and
structural information.

Recent advancements in the field have sought to incorporate atomic-level information into the
pipeline, characterizing conformational changes through the deformation of a reference atomic
model. This approach offers the advantage of easily integrating structural information from the
reference model. For example, e2gmm [12], cryoFold [13] and atomVAE [14] explored the explicit
modeling of (pseudo-)atoms or (pseudo-)residues using Gaussian mixtures. Other methods have
attempted to decompose heterogeneity into a few bases using normal mode analysis (NMA) [15, 16,
17]. This atomic level or residue level information often improves output interpretation by providing
sensible models with motion. However, these methods either only found relatively small continuous
motions, or were only verified on synthetic data.

The non-convex landscape of the atomic space poses a major challenge to finding a physical plausi-
ble structure in cryo-EM reconstruction [15, 13]. An intuitive approach to tackle this challenge is to
characterize the search space by structural regularization from prior knowledge. Figure 1 illustrates
the results with two popular regularization approaches. Weak regularization that only enforces back-
bone continuity is prone to disrupt local secondary structures (Figure 1 (i)) [13, 14]. On the other
hand, strong regularization such as NMA may suffer from the “interlock” [18] problem, causing the
results to be biased by the reference atomic model due to the large energy barrier between the con-
formational states (Figure 1 (iii)). We aim to pursue a solution that preserves most local structures
and prevents the undue influence from the initial structure.

In this paper, we propose an adaptive structural regularization approach, named cryoSTAR, to re-
solve continuous heterogeneity from cryo-EM datasets. CryoSTAR models the conformational het-
erogeneity as the deformations of a reference atomic model. To preserve local structures such as
helices and strands, cryoSTAR employs an elastic network model (ENM) [20] to measure the en-
ergy of the residues after deformation, which is similar to NMA by approximating the energy surface
with second-order expansion. Since ENM may be susceptible to the “interlock” problem, cryoSTAR
modifies the topology of ENM adaptively, based on the assumption that protein dynamics manifest
in the change of inter-residue distance.

Our contributions are twofold:
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Figure 2: The overall architecture of cryoSTAR. The key component is a trainable deformation
prediction network (E + D) mapping an input image I to an atomic strucutre Ŝ. The learning
signal mainly comes from two sources: the reconstruction loss between I and Î , and the structural
reguarization loss of Ŝ. The projection module P which transforms the structure Ŝ to a 2D image Î
is pre-defined and non-trainable.

• We propose an atomic model based on adaptive structural regularization for cryo-EM heterogene-
ity analysis. The topology of the elastic network model is constructed adaptively with signals
from the cryo-EM images. This enables the preservation of most local structures and prevents
convergence into the local minima of the reference structure.

• We apply cryoSTAR to a synthetic dataset and a public experimental dataset. On the synthetic
dataset, we achieve a maximum decrease of 7.14Å compared with NMA-based models. On the
experimental pre-catalytic spliceosome dataset (EMPIAR-10180 [21]), we successfully capture
motions that align with those observed in previous studies [21, 8].

2 Methods

The main goal of cryo-EM reconstruction is to recover a 3D volume V ∈ RD×D×D from its 2D
projections {I(i) ∈ RD×D}Mi=1, where D is the side length of the image or volume and M is the size
of dataset. By associating an atomic structure with a volume, cryoSTAR outputs an atomic structure
S ∈ RN×3 where N is the number of residues. Figure 2 shows the pipeline of cryoSTAR. We will
discuss each part in this section: (i) given an input image (particle) I(i) ∈ RD×D (the superscript i
will be omitted for simplicity of notation), a VAE-based deformation prediction network first infers
the atomic structure Ŝ ∈ RN×3 of a molecule, i.e., the coordinates of N residues (Section 2.1);
(ii) we convert the atomic structure S to a volumetric representation V̂ ∈ RD×D×D and calculate
its 2D projection Î ∈ RD×D (Section 2.2); (iii) in Section 2.3, we propose the structure-aware
regularization to constrain the atomic structure, including some basic constraints (Section 2.3.1) and
elastic regularization (Section 2.3.2). In Section 2.3.3 we further introduce the adaptive strategy
for relaxing the elastic regularization; and (iv) we combine it with the auto-encoding supervision
between I and Î to form the overall loss function in Section 2.4.
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2.1 Deformation prediction network

Following [13, 14, 15], cryoSTAR requires a reference atomic model Sref ∈ RN×3, where N de-
notes the number of the residues. Given an image I ∈ RD×D from the cryo-EM dataset, cryoSTAR
uses a variational autoencoder to predict the corresponding deformation ∆Ŝ that transforms the
reference structure to the deformed structure Ŝ = Sref +∆Ŝ.

The encoder E : RD×D → R|z| and decoder D : R|z| → RN×3 are both MLPs. MLP is
a global feature extractor and we do not observe any performance gain by using CNN in prac-
tice [8, 14]. The hidden dimensions of the encoder and decoder are set to (512, 256, 128, 64, 32)
and (32, 64, 128, 256, 512) respectively. The dimension of the latent space is 8.

2.2 Projection module

We use P : RN×3 → RD×D to represent a physics-aware projection module which computes
the projection from a given orientation. Specifically, the projection module P first converts the
deformed molecular structure Ŝ ∈ RN×3 into a volumetric representation V̂ ∈ RD×D×D, and then
computes the projections Î ∈ RD×D. Following cryoFold [13], cryoSTAR uses a Gaussian function
to correlate the volumetric density with a coarse-grained atomic model. The volumetric density can
be defined as the summation of N Gaussian blobs, each representing a residue’s electronic density:

V̂ (x) =

N∑
i

Ai exp

(
−∥x− µi∥2

2σ2
i

)
, (1)

where x ∈ R3 is a point in the sampling space, µi is the coordinate of the i-th residue in the predicted
structure Ŝ, Ai and σ2

i are the amplitude and the variance of the Gaussian blob. Specifically, the
center µi of each blob is determined by the coordinate of the Cα atom of the amino acid or the
P atom of the nucleotide†. The amplitude Ai is determined based on the total electrons of the
corresponding amino acid or nucleotide, and the width σi is set to 2 empirically [13]. Discussion on
how well the Gaussian density resembles the real density can be found in Appendix A.

Given a volumetric density V̂ , the projector further projects it to a 2D image Î . The projection
process requires an orientation and a constrast transfer function (CTF) determined by the microscope.
We assume these information is known, thus the projector is differentiable but non-trainable (see
Appendix B for details).

2.3 Structural regularization

For the sake of brevity, we only consider biomolecules with a single, continuous chain with length
N in our formulation and use subscript i, j to index its residues. We use dij and d̂ij to denote the
distance between the i-th and j-th residues in the reference structure Sref and the predicted structure
Ŝ, respectively. We keep this convention for all structural regularization definitions. It is worth
noting that the structural regularization can be applied to more complex cases such as structures
with multiple chains, missing residues, etc.

2.3.1 Incorporating basic structure information

The sequence of the target molecule should be unchanged in any conformational dynamics. The con-
tinuity loss Lcont ensures that the connection between two adjacent residues remains intact, which
is defined as:

Lcont =
1

N − 1

N−1∑
i

∥d̂i,i+1 − di,i+1∥2, (2)

This term enforces the two adjacent residues to maintain their connectivity. To prevent two residues
from clashing after predicting the deformation, cryoSTAR calculates a clash loss Lclash on the pairs
of residues that ensure the following condition during training:

Pclash = {(i, j)|1 ≤ i, j ≤ N ; i ̸= j; d̂ij < kclash}, (3)

†If P does not exist, we use C1’ instead.
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Lclash =
1

|Pclash|
∑

(i,j)∈Pclash

∥d̂ij − kclash∥2, (4)

where Pclash denotes the set of residue pairs that experience collision during training. (i, j) is an
index pair numbering the residues in the structure. Results will be penalized when the predicted
distance between two non-adjacent residues is less than the threshold kclash, thereby preventing
residue clashing from happening. In this study, we set kclash to 4Å. For a protein complex with
different chains, we consider residues from other chains for the calculation of Lclash.

2.3.2 Preserving local rigidity with elastic network

CryoSTAR assumes that the local structure should remain rigid. This is a reasonable assumption
because: (1) modification of the local structure (secondary structure) is rare in the conformational
dynamics captured by cryo-EM, (2) when changes in secondary structure do occur, they are typically
resolved through discrete 3D classification methods. CryoSTAR parameterizes the preservation of
the local shape and geometry of the backbone model with an elastic network (EN). Specifically,
given the initial structure, cryoSTAR builds an elastic network by connecting the residue pairs within
a pre-defined distance. The elastic network loss is defined as:

PEN = {(i, j)|1 ≤ i, j ≤ N ; i ̸= j; dij < kEN}, (5)

LEN =
1

|PEN|
∑

(i,j)∈PEN

∥d̂ij − dij∥2, (6)

where PEN is a set of edges for building the elastic network, and the constant value kEN is a prede-
termined cutoff to find all possible non-covalent interactive pairs of residues. We set kEN to 12Å,
which is a commonly chosen distance to model such interaction in a coarse-grained model [22]. For
a protein complex, we do not build edges between different chains.

2.3.3 Adaptive relaxation

A static elastic network may be subject to the bias from the given reference atomic model, while
conformational change often involves the forming and breaking of certain non-covalent interactions.
For example, using the closed state of adenylate kinase (pdb: 1ake [23]) as the reference atomic
model, the elastic network will cause the “interlock” problem (Figure 1), making it impossible to
transition to the open state (pdb: 4ake [24]).

To identify and mitigate these undesirable interactions, cryoSTAR adaptively selects the edges
present in the elastic network for regularization. To be specific, in each mini-batch of size b,
cryoSTAR predicts b distance values, d̂ij’s, for each edge in the elastic network defined in Sec-
tion 2.3.2, where (i, j) ∈ PEN. Subsequently, we compute the variance of the predicted distances
for each edge, denoted by Var(d̂ij), over the set of these b values. We posit that the variance of the
edge distance reveals the stability of edges during training, with higher variance indicating a greater
likelihood of edge disruptions. All variances corresponding to the edges in PEN can be grouped into
a set V ≜ {Var(d̂ij)|(i, j) ∈ PEN}. In the calculation of the loss, we only retain edges with variance
below a certain percentile threshold p. Thus, only a subset of PEN is used for the calculation of loss
LEN:

P ′
EN = {(i, j)|(i, j) ∈ PEN,Var(d̂ij) < the p−th percentile of V}. (7)

Note that P ′
EN changes for every iteration. The rationale behind this is that the interactions responsi-

ble for stabilizing secondary structures should be unchanged, while the interactions involved in the
conformational changes are unstable, exhibiting greater variance during training. Eliminating these
unwanted constraints encourages the model to explore a wider range of potential conformations sup-
ported by the data. This allows cryoSTAR to mitigate the potential bias stemming from the reference
atomic model.

2.4 Loss function

The final loss function L is composed of three parts: (i) the image reconstruction loss Limage, (ii)
the structural regularization loss Lstruct from Section 2.3, (iii) a posterior regularization term LKL,

5



which encourages the latent code z to be normally distributed.

L = Limage + Lcont + Lclash + LEN︸ ︷︷ ︸
Lstruct

+wKLLKL, (8)

where wKL = 1
D2 .

For the image reconstruction loss, cryoSTAR uses cross correlation to measure the similarity be-
tween an input image (particle) I and the predicted projection Î:

Limage = − I · Î
∥I∥F · ∥Î∥F

, (9)

where · denotes a pixel-wise multiplication, and ∥I∥F is the Frobenius norm of I , which is a constant
and can be omitted.

3 Results

In this section, we first validate the effectiveness of our approach on a synthetic dataset, and then
show the result on a real-world experimental dataset.

3.1 Implementations

We implement two baselines for comparison. CONT: a method that only enforces backbone con-
tinuity like [13, 14]. This is a variant of cryoSTAR where Lstruct only holds the Lcont. NMA: A
method that predicts the normal mode coefficients of a molecule. Although the orientation (pose)
is given, it may be slightly changed by the NMA vectors which only capture the conformational
change [19, 15]. We predict an additional rotation matrix and a translation vector to correct the
orientaion [19]. For normal mode vector computation, we first use ProDy [25] to build the Hessian
matrix with the cutoff set to 12Å, then run sparse eigen-decompostion to extract the top 16 eigenvec-
tors on GPU with CuPy [26]. The eigen-decomposition of a 104 × 104 matrix costs about 3 minutes
on a Tesla-V100 GPU.

All these method are implemented with PyTorch [27]. The batch size is set to 64. The total training
step is set to 12,000 for the synthetic data and 96,000 for the experimental data. We set the variance
threshold p (Section 2.3.3) to 80 for the synthetic dataset and 95 for the experimental dataset.

3.2 Validation on a synthetic dataset
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Figure 3: The Cα-RMSD at different confor-
mational states (left side: 1ake, right side:
4ake). Each state has several particle im-
ages, therefore for each state a distribution of
RMSDs can be computed. We visulize the er-
ror band for cryoSTAR and the two baselines.
The middle curve in every band denotes the
mean and the light blue regions denote one
sigma deviation. Our method achieves the
lowest RMSD across all states.

Dataset Following the setting of Nashed et al.
[15], we generate a 50-frame trajectory between the
atomic models of the closed (1ake [23]) and the open
(4ake [24]) states of adenylate kinase (AK) using Py-
MOL [28]. We use the e2pdb2mrc program in the
EMAN2 package [3] to compute the density maps
from the full-atomic models, and then generate the
synthetic particles. See Appendix C for statistics of
the simulator (Table 1) and sample images (Figure
6). The closed state model (1ake) is used as the ref-
erence structure.

Discussion In the synthetic dataset, the backbone
model S(i) of each particle I(i) is already known.
For each particle, we infer its latent code and gen-
erate the corresponding backbone model Ŝ(i). We
compute the root mean squared distance (RMSD) of
Cα’s between S(i) and Ŝ(i) to measure the accuracy
of the deformation prediction network. Note that
we do not align two structures before computing the
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RMSD, because the orientation is already given. Figure 3 shows that cryoSTAR has a consistently
lower RMSD than the two baselines at different conformational states. NMA has a larger RMSD at
the open state (7.14Å higher than cryoSTAR), suggesting the bias of using the closed state model as
the reference structure.

3.3 Application on an experimental dataset

SF3b

Body

Foot

Helicase

CONT Ours NMA

CONT 5% CONT 95% Ours 5% Ours 95% NMA 5% NMA 95%

(i)

(iii)

(ii)

Disrupted structure No dynamicsOpen-closed states

Figure 4: Results of cryoSTAR and the two baselines on the pre-catalytic spliceosome dataset
(EMPIAR-10180). (i) The reference structure (pdb: 5nrl) of the pre-catalytic spliceosome. The
four domains (SF3b, helicase, the body and the foot) are labeled in the corresponding places. (ii)
Reconstructured coarse-grained backbone models by the three methods, each sampled at the 5-th
and the 95-th percentile of the first PCA dimension. CONT fails to preserve local structures (such
as colored helices), and NMA fails to find the open state. CryoSTAR succeeds in finding dynamics
and preserving local structures simultaneously. (iii) The latent space of the three methods, where
color depth represents the population of each conformation state z, and red symbols ◦ and × denote
the 5-th and 95-th percentile of the first PCA-dimension, respectively. Both CONT and NMA find a
single mode, while cryoSTAR finds two modes in the latent space.

Dataset We applied cryoSTAR to the experimental pre-catalytic spliceosome dataset (EMPIAR-
10180) [21]. This dataset contains preprocessed particles ready for 3D reconstruction, and has
been widely used as a benchmark to solve the continuous heterogeneity problem in cryo-EM [8, 29,
30]. We resize the particles to 128 × 128 with low-pass filtering. The atomic model built from the
cryo-EM density map (pdb: 5nrl) in the original paper [21] is used as the reference atomic model.

Discussion The pre-catalytic spliceosome can be divided into four domains: SF3b, helicase, the
body and the foot (Figure 4 (i)). Although a ground truth of the dynamics is not available, previous
method resolved an up-down movement of the SF3b and the helicase domains on the volumetric
density [8], which was also supported by the hypothesis in the original paper [21]. We sampled two
states from the two ends of the first PCA dimension of the latent code to compare the results of
cryoSTAR with the two baselines (Figure 4 (ii, iii)). With only Lcont as the regularization (CONT),
the output backbone models for both states are chaotic, where the structured regions (e.g., α-helices)
are totally destroyed. On the other hand, NMA preserves the local structures, but the difference be-
tween the two states is minimum, suggesting that it can only recover small movements that resemble
fluctuations rather than capturing large conformational dynamics. In comparison, cryoSTAR finds
large up-down motions of the SF3b and the helicase domains. Moreover, cryoSTAR preserves the
local secondary structures without obvious distortions.

4 Conclusions and limitations

In this work, we study atomic level heterogeneity analysis through a strcutural regularization ap-
proach, and propose an adaptive approach to preserve local structures and avoid local minima simul-
taneously. Experiments on the two datasets validate the effectiveness of our method.

The study has one major limitation: the expressive power of isotropic Gaussian functions. Isotropic
Gaussian functions are widely used in related exploration for modeling simplicity and computational
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efficiency [12, 13, 14]. However, it is prone to spherical artifacts, which may impair the accuracy of
likelihood estimation. Some recent work in computer graphics [31] replaces it with an anisotropic
one, and it may unlock the potential of Gaussian functions. We will leave it for future work.
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Appendix

A Quality of Gaussian density

(a) (b) (c)

Figure 5: (a) The simulated 1akeA full-atom density volume by EMAN2 [3]. (b) The CA atom
based Gaussian density. (c) Determination of the low-pass cutoff frequency.

As illustrated in Figure 5, the Gaussian density is not equivalent to the density map reconstructed
from the by particle images. To address this distortion, we calculate the Fourier shell correlation
(FSC) between the Gaussian density and consensus density map, and low-pass filter the Gaussian
density to the frequency where FSC = 0.5. In other words, cryoSTAR only uses low to interme-
diate resolution information to help resolve the continuous heterogeneity in cryo-EM data. This is
also the reason that a more fine-grained model (e.g., a full-atomic model) is not used in this study.

B Projection module’s image formation

Cryo-EM images are the 2D projections {I(i) ∈ RD×D|i = 1, 2, · · · ,M} of the molecules’ density
maps V ∈ RD×D×D. Numerous molecules of the same kind with different orientations are instantly
frozen and imaged with electrons, and their 2D projections are recorded. Here we introduce the
image formation of the projeciton module.

Briefly speaking, for a single molecule, its 3D density V is first rotated (R : RD×D×D → RD×D×D)
and then projected (Π2D : RD×D×D → RD×D) on the 2D plane. An in-plane translation t :
RD×D → RD×D is applied to center the projected image. Finally the image is corrupted by a
physics-aware noising operator CTF : RD×D → RD×D.

Î(i) = (CTF(i) ◦ t(i) ◦Π2D ◦ R(i))(V̂ (i)), (10)

where R, t and CTF are differentiable and their parameters are instance-wise and given, Π2D is
non-parametric. Further details are listed as below:

• R and t are the so-called “pose” in cryo-EM. R denotes the orientation of the molecule. t is re-
quired since the 2D projections are cropped from a large micrograph in standard cryo-EM pipeline,
it is not well centered.

• Π2D is a projection operator that takes integral along the first dimension of a density.
• CTF is a noising operator named contrast transfer function that describes how aberrations in a

transmission electron microscope (TEM) and the imaging defocus modify the image. Note that
CTF is defined in the Fourier space, and the corresponding version in the real space is point spread
function (PSF). We use CTF throughout this paper for simplicity.

• Additionally, the image is corrupted with noise stemming from the stochastic nature of electron
detection events and sensor failures [32]. We omit this in our image formation model.

C Synthetic dataset generation

In order to measure the accuracy of our methods, we generate a synthetic dataset for evaluation. A
realistic simulator is equipped in the image formation process as described in Appendix B. We use
Gaussian additive noise in the formation process. Each states from 1ake to 4ake generates 1,000
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particle images. The parameter settings of synthetic dataset are shown in Table 1. An example of
synthetic particle images are shown in Figure 6.

Parameters Value
Number of particles 50, 000
Image size 128 px × 128 px
Image pixel size 1.0 Å
Defocus Lognormal(1.0, 0.32) µm
Accelerating voltage 300 keV
Spherical aberration (cs) 2.7 nm
Amplitude contrast ratio 0.1
SNR (with Gaussian noise) 0.0001
Pose/rotation Uniform on SO(3)
Pose/translation 0

Table 1: Statistics of the synthetic dataset. Figure 6: Examples of the
particles from the synthetic
dataset.
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