
Compositional Deep Probabilistic Models of DNA
Encoded Libraries

Abstract

DNA-Encoded Library (DEL) has proven to be a powerful tool that utilizes combi-
natorially constructed small molecules to facilitate highly efficient screening assays.
These selection experiments, involving multiple stages of washing, elution, and
identification of potent binders via unique DNA barcodes, often generate complex
data. This complexity can potentially mask the underlying signals, necessitating the
application of computational tools such as machine learning to uncover valuable
insights. We introduce a compositional deep probabilistic model of DEL data,
DEL-Compose, which decomposes molecular representations into their mono-
synthon, di-synthon, and tri-synthon building blocks and capitalizes on the inherent
hierarchical structure of these molecules by modeling latent reactions between em-
bedded synthons. Additionally, we investigate methods to improve the observation
models for DEL count data such as integrating covariate factors to more effectively
account for data noise. Across two popular public benchmark datasets (CA-IX and
HRP), our model demonstrates strong performance compared to count baselines,
enriches the correct pharmacophores, and offers valuable insights via its intrinsic
interpretable structure, thereby providing a robust tool for the analysis of DEL
data.

1 Introduction

DNA-Encoded Libraries (DELs) have demonstrated their potency as a robust method for conducting
efficient exploration across a vast chemical landscape, and has recently gained significant traction in
drug discovery efforts Goodnow Jr et al. [2017], Yuen and Franzini [2017], Neri and Lerner [2018],
Madsen et al. [2020], Satz et al. [2022], Peterson and Liu [2023]. These small molecule libraries
are synthsized combinatorially by combining diverse building blocks with compatible chemistries.
A DNA barcode, which is covalently attached to the molecule, specifies the unique combination
of building blocks for each molecule. DELs are then used in selection experiments for proteins of
interest, wherein multiple rounds of washing and elution are performed before identification of the
surviving library molecules. While proven to be a highly efficient process of exploring chemical space
at scale, these selection experiments are noisy and require computation methods with the correct
inductive biases to extract useful signals for downstream applications such as hit discovery and lead
optimization Gironda-Martínez et al. [2021], Reiher et al. [2021].

Prior work has tackled the analysis of DEL data from various perspectives. Many of these methods are
predicated on computing an enrichment score for each molecule as a function of the observed data or
molecule structure. Gerry et al. [2019] computes this enrichment score by fitting Poisson distributions
to the count data and then computing the ratio of the on-target versus off-target binding affinities
derived from the fitted distributions. However, this approach and other similar approaches Kuai
et al. [2018], Faver et al. [2019] do not extend to out-of-library predictions as the enrichment is
computed from the data itself rather than predicted via molecular structure. To that end, other
methods have tackled this problem by utilizing molecule structure via molecular fingerprints and
graph neural networks. McCloskey et al. [2020] and Zhang et al. [2023] bin the count data and
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construct a classification problem based on their discretizations of the data. In particular, Zhang et al.
[2023] proposes exploiting the compositional structure of DELs for the extraction of enrichment
signals, but unlike our work, no explicit generative models of this factorized representation or the
improved likelihoods to deal with DEL data are built. Other approaches formulate the problem as a
latent-variable prediction task, maximizing the probability of observing the count data under some
prescribed probability distribution such as the Poisson or Negative Binomial distribution Binder
et al. [2022], Lim et al. [2022], Ma et al. [2021]. Shmilovich et al. [2023] extends the representation
capabilities of models on DEL data by incorporating 3-D docked poses to enhance the performance
of models without requiring additional supervised validation data. However, these prior works do not
leverage the inherent hierarchical structure of DEL data.

We introduce an new approach to modeling DEL molecules, which explicitly factorizes the molecular
representation in a motivated manner through the construction of a generative model. We propose
learning individual synthon representations, and construct the corresponding di-synthon and tri-
synthon representation from their respective synthon compositions utilizing learned latent reactions
parametrized by neural networks. Signals in DEL selection experiments are obfuscated by the various
sources of noise, but given the combinatorial construction of the library, these sources of variation are
highly correlated within any particular synthon group. Our method additionally avoids the necessity
of enumerating full-molecule structures, which can often be a tedious process prone to errors, and
only requires molecular structures of individual synthons.

In addition to our newly proposed paradigm for representing DEL molecules computationally in this
factorized fashion, we further investigate the effects of different experimental biases in order to aptly
model the count data. In particular, we focus on two prominent sources of noise inherent in DEL
data, which stem from pre-selection and replicate-level biases. Modeling these is typically omitted in
previous work on this topic. Since DEL molecules are synthesized using a split-and-pool method, the
relative abundance of each library member is uncertain in the final mixture. While the library itself is
sequenced to obtain a rough estimate of the molecule distribution, this count data is also prone to
potential synthesis and sequencing biases. Across different replicates, we also expect to see different
experimental or sequencing noise. We propose a structured parametrization in our count likelihoods
to account for the effects of these factors in order to better model the observed count data and learn
useful latent properties of DEL molecules.

We test our models empirically on DEL selection datasets for two targets: Carbonic Anhyrase IX
(CA-IX) and Horseradish peroxidase (HRP) Gerry et al. [2019]. Since these two well-studied targets
have known pharmacophores, we demonstrate that our model can effectively pick out the important
synthons–even on challenging splits of the data. Furthermore, we demonstrate that our method can
obtain competitive performance even without requiring fully enumerated molecule structures. Lastly,
we show that our model offer useful insights into the predictions given by the model.

2 Methods

2.1 Molecules As Synthon Compositions

Our model broadly capitalizes on the combinatorial nature of DEL molecules, and creates a com-
position of representations using the individual building blocks of each molecule. To that end, we
describe a generative model of the underlying data-generating process for DEL count data and first
introduce some mathematical notation.

Let X be the set of DEL molecules in our dataset, and {SA,SB ,SC} be the sets of synthons at the
first, second and third positions respectively. Each molecule is denoted by xabc ∈ X , where the
subscript indicates the identity of the synthon at a particular position (a ∈ SA, b ∈ SB , c ∈ SC). To
simplify (and overload) notation, we omit the subscript for a particular synthon position if it is absent.
For instance, xb denotes the molecule corresponding to the synthon b at the second position, and xab

denotes the molecule corresponding to the combination of synthon a at the first position and b at the
second position.

DEL molecules are used in selection experiments wherein molecules undergo multiple rounds of
washes to determine the strongest binders. Molecules with strong binding affinity would not be
eluted off, but this binding might not be specific to the protein of interest. In order to also account
for non-specific binding of the molecules, there are two typically two experimental conditions that
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are run, the target condition, which describes the data for selection against the protein target of
interest, and the matrix condition, which describes the data in the absence of the protein target. Once
the selection experiments are conducted, the surviving DEL members are sequenced, resulting in
DNA read count data which we will denote as Ct = {cit|i ∈ [1, nt]} and Cm = {cjm|j ∈ [1, nm]}
for target and matrix read counts respectively. Here, (nt, nm) are the number of count replicates for
target and matrix respectively. Moreover, DEL data is usually calibrated with an additional read-out
of the library itself, which we denote as cp (this notation is lowercase, as there is usually only a single
read-out of the library). This library read-out is a noisy estimate of the relative abundance of each
molecule member.

2.2 DEL-Compose: A Generative Model of DEL Data

Here we introduce DEL-Compose, a general paradigm for modeling DEL molecules leveraging their
combinatorial nature (Figure 1). Our objective is to maximize the likelihood of observing the count
data given an input molecule xabc. Let Z = {zs ∈ Rd|s ∈ [a, b, c, ab, abc,mol]} be a collection of
latent synthon embeddings each of dimension d. za denotes an embedding of an individual synthon
xa, while zab denotes an embedding of a di-synthon xab which is the reaction output of xa and xb.
Similarly, zabc denotes an embedding of tri-synthon xabc, which itself is a product of the reaction
of xab and xc. Finally, zmol is the aggregated embedding of all the above representations. We thus
assume embeddings corresponding to all the (partial) products and building blocks of molecule can
be viewed as a synthon decomposition and their respective set of chemical reactions.

We utilize this structure to factorize a model of count observations given synthons
p(Ct, Cm|xa, xb, xc) into two quantities as shown in Equation 1: a model capturing our beliefs
about count observations given a collection of synthon embeddings Z and a model mapping observed
synthons to such embeddings. Note that we do not require access to the full molecule observation
xabc, but rather only the individual synthons: xa, xb, and xc in such a model.

p(Ct, Cm|xa, xb, xc) =

∫
p(Ct, Cm|Z) · p(Z|xa, xb, xc)dZ. (1)

In practice we will be inferring point estimates of the embeddings corresponding to p(Z|xa, xb, xc)
but present the model in generality. In order to de-noise the contribution of actual molecule binding to
the count data read-outs, we explicitly define latent enrichment parameters {λt, λm}, which capture
a molecule’s affinity for binding in the target and matrix experimental conditions. While there are
many auxiliary factors that affect the final read count for DEL experiments, we choose two prominent
factors to incorporate in our model, which are pre-selection library read-out, cp, and replicate-level
noise, which we denote as {γt, γm}. The generative model can then be broken down according to
Equation 2:

p(Ct, Cm,Φmol,Z|xa, xb, xc; Θ) = p(Ct, Cm|Φmol; Θx)p(Φmol|Z; Θo)p(Z|xa, xb, xc; Θi). (2)

Here, Φmol is the set of variables predicted by the model that parameterizes the output distribution,
for instance (λt, λm). The model is then broken up into three components: (1) Θi consists of the
model parameters that construct the hierarchical synthon embeddings, (2) Θo consists of the model
parameters that predict Φmol from these embeddings, and (3) Θx = {cp, γt, γm} consists of the
parameters for the observation model that captures experimental noise. We define the joint set of
these parameters as Θ := {Θi,Θo,Θx}. We summarize the joint model visually in Figure 1 and will
develop and define its components in more detail over the following sections.

2.3 Neural Network Representations of synthons and molecules

Here, we delienate our explicit modeling choices with respect to the probabilistic model introduced
earlier, which is captured as the top part of the model visualized in Figure 1. Assuming Z = {zs|s ∈
[a, b, c, ab, abc,mol]} we unpack p(Z|xa, xb, xc; Θi) to yield expressions in detail for each latent
variable as follows:
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Figure 1: Graphical model depicting data-generating process for DEL count data.

p(Z|xa, xb, xc; Θi) =

{a,b,c}∏
s

[
p(zs|xs; fe)

]
p(zab|za, zb; fab)p(zabc|zab, zc; fabc)p(zmol|Z ̸=mol; fmol),

(3)

where {fs|s ∈ [a, b, c, ab, abc,mol]} is a set of functions modeling the generative process by which
the synthon embedding zs can be constructed, including (i) transformations from observed structures
to embeddings and (ii) latent reactions modeling how synthon embeddings compose in latent space
to form embeddings over higher order synthon structures.

Neural networks parametrize synthon embeddings We first identify function fe as a model
parametrized by a multi-layer perceptron with parameters θe mapping molecular fingerprints ϕ(xs)
of a synthon xs to an embedding per synthon zs. Let ϕ be a fingerprint transformation such as
Morgan Fingerprints Rogers and Hahn [2010]; we compute the latent mono-synthon representations
as zs = fe(ϕ(xs); θe). ϕ can also extend to other molecule representations such as graph neural
networks (or other higher order functions that act on different data modalities of molecules), but we
find fingerprints work well empirically and are fast to compute.

Neural networks parametrize latent reactions between synthon embeddings We then compute
di-synthon and tri-synthon embeddings using mono-synthon embeddings, and give some exam-
ples as follows. Di-synthon embeddings utilize a latent reaction fab to compute embedding zab =
fab([za, zb]; θab) and tri-synthon embeddings are analogously given as zabc = fabc([zab, zc]; θabc).
Here, (fab, fabc) are separate neural networks parameterized by (θab, θabc) respectively. fab can be
interpreted to model latent reactions between mono-synthon embeddings za and mono-synthon em-
beddings zb to yield a product-synthon-embedding zab. Likewise, fabc models the function mapping
zab and zc to the tri-synthon-embedding zabc. There are multiple ways to generate the tri-synthon
embedding, for instance instead using all three mono-synthon embeddings, but we choose one formu-
lation that is consistent with the sequential nature of a DEL molecule’s synthesis. Although (xbc, xac)
are not actual observed partial products, we can optionally learn their respective embeddings and
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Figure 2: Model architecture for our model utilizing synthon-based embeddings. Synthons embedded
and composed to mono-, di-, and tri-synthon embeddings, before aggregated into a single representa-
tion. Conditioned on the molecule embedding, our model predicts latent properties of the molecules
that are used to model the observed count data. While the generative process does not explicitly
incorporate xbc and xac, these are sensible molecular subgraphs that make sense in the representation
of the molecule.

incorporate them into the model, as illustrated in Figure 2. Finally, we utilize a multi-head attention
layer fmol with parameters θmol on the different synthon embeddings to construct a single embedding
representing the entire molecule, zmol = Multihead-Attention([za, zb, zc, zab, zbc, zac, zabc]; θmol).
We note that zmol can be different from zabc or trivially equal to it. The model has the freedom to
utilize zmol to focus on abstracting partial products if those are more informative about enrichment,
while zabc is an explicit representation of the tri-synthon embedding and does not have to be maxi-
mally informative about enrichment on its own. We summarize all parameters of these individually
specified functions as Θi = {θe, θab, θabc, θmol}.

2.4 Probabilistic Models of Enrichment Counts

In this section we will present some choices for the model generating the per-molecule observation
model parameters given the embeddings p(Φmol|Z; Θo). We model the observed count as a zero-
inflated Poisson (ZIP) distribution (PDF given in Equation 4), the parametrization of which is
conditioned on our learned embeddings. A ZIP distribution is a mixture distribution that makes
a bi-modal outcome assumption: a zero outcome indicating absence of measurable data, and a
measurable enrichment with some appropriate count distribution. Intuitively, because DEL data
is highly susceptible to noise of different types, including synthesis, amplification, or sequencing
noise, we can think of the zero-probability as a drop-out parameter explaining away the absence of an
expected count rather than forcing the model to absorb it by adjusting the expected enrichment.

P(C = c|λ, π) =

{
π + (1− π)e−λ if c = 0

(1− π)λ
ce−λ

c! if c > 0
(4)

For each of the experimental conditions, the target and matrix, we predict a separate ZIP with
correlated parameters. A ZIP is characterized by two parameters, a mean value λ, and a zero
probability p ∈ [0, 1) that describes the rate of dropout. From our learned molecule embedding
zmol, we predict two sets of parameters {λt, pt} and {λm, pm} using the function fλ instantiated
by an MLP with parameters θo (and consequently Θo := θo). For this likelihood this means that
Φmol = {λt, pt, λm, pm}, but we note that Φmol can take different appropriate shapes if other
likelihoods are chosen. : [λt, pt, λm, pm] = fλ(zmol; θo). λ can be thought of as a molecule’s
intrinsic binding affinity property as learned by the model, while p captures the noise in the data. This
also highlights the utility of capturing enrichment-related molecule abstractions using zmol, which
can focus on utilizing partial products to predict noisiness and enrichment with more fidelity as our
experiments will show. If the data is inherently noisy and experience high dropout (or zero counts),
the zero probability parameter should be relatively high.

Since we expect that the binding in the matrix condition should be informative of a molecule’s
off-target binding, we want to correlate the predicted distribution of the target condition to the
matrix. Additionally, we add the pre-selection counts cp and learned replicate-level effects {γt, γm}
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as multiplicative factors in the mean of the predicted distribution. The latter accounts for variance
across different replicates of the same experiment, which can result from PCR bias noise. We
denote the collection of the relevant parameters for modeling experimental conditions and noise as
Θx = {cp, γt, γm}. Together, we arrive at the following function form:

cit ∼ ZIPoisson (cp · exp (γi
t) · exp (λm + λt), pt), (5)

cjm ∼ ZIPoisson (cp · exp (γj
m) · exp (λm), pm), (6)

where i and j are target and matrix replicate indices, respectively. The output and count models
introduced in this section are captured in the bottom part of the graphical model depicted in Figure 1.

3 Results and Discussion

Experimental Setup We conduct experiments on a public dataset of tri-synthon DEL data from
Gerry et al. [2019], which includes DEL selection data on two well-studied protein targets: carbonic
anhydrase IX (CA-IX) and horseradish peroxidase (HRP). Their data consists of two experimental
conditions, one with the protein target, and one matrix condition that is conducted in the absence of
the protein as control. For CA-IX this dataset includes 2 replicates of matrix data, and 4 replicates of
on-target protein data; while for HRP, this dataset includes 4 replicates of matrix data and 2 replicates
of on-target protein data. Additionally, there is data collected on the pre-selection library, which is
an indicator of the relative abundance of the different DEL members. Information about important
pharmacophores is given in

Metrics We utilize several well-motivated metrics to evaluate the performance of our model without
additional data (ie on-DNA KD data for DEL molecules). Since we model the observed data through
predicting a count distribution, we can measure the performance through the model loss, which is
the negative log likelihood (NLL) of the ZIP distribution predicted for molecules in a held-out test
set. This is a typical metric to gauge the overall fitness of a probabilistic model. However, as with
other applications, likelihood metrics can be complemented with other application-relevant metrics to
capture the behavior of the model.

Since we are interested in the quality of the learned model, we want to directly capture its ability to
represent signals in the data. We use the expected mean of the predicted distribution as the computed
enrichment, or affinity, of a molecule. For our model, this is exactly ϵ = (1− p) · λ, where p is the
predicted zero-probability and λ is the predicted latent score for a molecule. While DEL-Compose
predicts two count distributions, one for the target and one for the matrix, the latter is mainly used to
calibrate a molecule’s affinity for the protein target. A molecule with high counts in the matrix but
not the target condition should be predicted to have a high matrix enrichment score, but a low target
enrichment score. Using these enrichment scores, we can gauge the performance of our model at an
synthon-aggregate level, as we know the pharmacophores and their relative levels of activity.

Lastly, we introduce a new metric to evaluate the quality of our model’s predictions by the ability of
our model to separately out different classes molecules, which we define as having a better predictor.
We first introduce some notation: CA-IX has three distinct groups, {gpara, gmeta, gother}, in order
of protein activity for the para-substituted sulfonamides, meta-substituted sulfonamides, and other
molecules respectively. HRP has four distinct groups, {ge1, ge2, ge3, gother}, in order of protein
activity for the three different Michael acceptor electrophiles (described in Figure 6) and other
molecules respectively.

From this, we define a multi-class precision-recall area under the curve (PR-AUC) in order to evaluate
the ability of our model to differentiate molecule classes. Let s(ga|gb) be the computed PR-AUC
using ga as the positive class and gb as the negative class. Since we know the expected rankings
of these molecule classes (ie gpara > gmeta > gother), we can compute the AUC for each pair
and then take an unweighted average over all such pairs. Since the data is heavily skewed towards
representation of molecules without appreciable activity towards the protein target, we weigh each
molecule class equally. These AUC computations are noted exactly in Equations 7 and 8:

PR-AUCCA-IX =
1

3

[
s(gpara|gmeta) + s(gpara|gother) + s(gmeta|gother)

]
, (7)
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Figure 3: Predicted average marginal enrichment from DEL-Compose of both control and target
counts for CA and HRP. Our model can distinguish synthons with high noise in the matrix, but not
actual protein binding activity.

PR-AUCHRP =
1

6

[
s(ge1|ge2)+s(ge1|ge3)+s(ge2|ge3)+s(ge1|gother)+s(ge2|gother)+s(ge3|gother)

]
.

(8)

3.1 DEL-Compose captures enrichment of important pharmacophores

Our first result is to show that DEL-Compose can correctly determine the important pharmacophores
in the dataset. In Figure 3, we plot the average marginal enrichment of a synthon as predicted by our
model on the test set. For both protein targets, our model correctly enriches the important synthons,
which are the benzene-sulfonamides for CA-IX and the Michael-acceptor electrophiles for HRP.
Moreover, our model predicts the correct ranking of these different groups. What is particularly
interesting to observe is that our model enriches certain non-sulfonamides synthons in the control
experiments of CA-IX, but not in the target. This signifies that our model can correctly distinguish
the synthons which might have high noise, or off-target matrix binding.

Next, we compare our deep probabilistic approach to several baselines that compute enrichments
based on counts alone. These enrichment baselines try to assess the affinity of a molecule based on
some assumed functional form. For instance, the Diff Enrichment score makes the assumption that
there is a simple additive effect between the matrix and target counts. Poisson enrichment is taken
from Gerry et al. [2019], which computes a maximum likelihood Poisson distribution for the target
and matrix counts and then computes a ratio of the target at the lower 95% confidence interval (CI)
and the matrix at the upper 95% CI. This baseline is perhaps closest to our model, however, our model
relates the two distributions directly, whereas this score does not directly correlate the two values.

• Diff Enrichment: score = 1
nt

∑
i c

i
t − 1

nm

∑
j c

j
m

• Ratio Enrichment: score =
[(

1
nt

∑
i c

i
t

)
+ 1

]
/
[(

1
nm

∑
j c

j
m

)
+ 1

]
• Poisson Enrichment: score = CIlower95[Poisson(λt)]/CIupper95[Poisson(λm)]

Since these baselines are not trained models, but rather explicit functions of the count data, we
cannot compare these metrics against our model in terms of predicted likelihood. However, all
methods provide a ranking of the test molecules, from which we can compute the aforementioned
multi-class PR-AUC. We compare the performance of these models to DEL-Compose on random
and synthon splits in Table 1. “Pre” and “Rep” refer to using the pre-selection and replicate factors
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Random Split Matrix NLL ↓ Target NLL ↓ Sum NLL ↓ PRC-AUC ↑

C
A

-I
X

Diff Enrichment - - - 0.23 ± 0.01
Ratio Enrichment - - - 0.26 ± 0.02
Poisson Enrichment - - - 0.25 ± 0.01
DEL-Compose 3.17 ± 0.03 2.82 ± 0.04 5.99 ± 0.06 0.28 ± 0.33
DEL-Compose (Pre) 2.97 ± 0.01 2.80 ± 0.02 5.77 ± 0.02 0.90 ± 0.03
DEL-Compose (Rep) 3.13 ± 0.03 2.65 ± 0.03 5.78 ± 0.06 0.73 ± 0.34
DEL-Compose (Pre+Rep) 2.96 ± 0.02 2.65 ± 0.01 5.61 ± 0.01 0.84 ± 0.07

H
R

P

Diff Enrichment - - - 0.59 ± 0.01
Ratio Enrichment - - - 0.48 ± 0.01
Poisson Enrichment - - - 0.57 ± 0.01
DEL-Compose 6.51 ± 0.11 5.61 ± 0.09 12.12 ± 0.19 0.80 ± 0.12
DEL-Compose (Pre) 6.30 ± 0.03 5.35 ± 0.02 11.65 ± 0.04 0.78 ± 0.03
DEL-Compose (Rep) 6.39 ± 0.04 5.53 ± 0.04 11.92 ± 0.08 0.81 ± 0.04
DEL-Compose (Pre+Rep) 6.23 ± 0.02 5.30 ± 0.02 11.54 ± 0.03 0.80 ± 0.04

Table 1: Metrics for different variants of DEL-Compose compared to baseline enrichment metrics on
random splits. Metrics are averaged across the test set over 5 different splits.

Figure 4: Predicted zero-probability is a good measure of predicted data noise for CA-IX (left) and
HRP (right)

in the construction of the output distribution for DEL-Compose. In terms of likelihood, we see that
our model that incorporates both pre-selection and replicate factors outperforms all ablations, which
validates our intuition that these are important considerations when trying to model DEL data.

Comparing the enrichment baselines to the results of DEL-Compose, we notice that our model
outperforms the baselines in terms of multi-class PR-AUC. It is important to note that the baseline
metrics do not incorporate the pre-selection data, but even our factorized models without using the
pre-selection counts outperform these baselines in most cases. Since the enrichment baselines have
oracle access to the actual data, this suggests that DEL-Compose is capturing important aspects of
the chemical data. We have not included models learned on top of these computed enrichment scores
(which several previous works have proposed), as our model can outperform these oracle metrics
already. Additional experiments showing generalizability of our model is shown in Appendix B.

3.2 DEL-Compose facilitates structured interpretation of the data

Due to its modeling structure, DEL-Compose provides good interpretability and insights to the
model–which is ultimately useful for the chemist using this model. In Figure 4, we have plotted the
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Figure 5: Attention distribution of synthon embeddings. The top set of plots aggregate all the known
pharmacophores together, while the bottom set of plots separates out each class of molecules. For
CA-IX, the highest attention weights are attributed to the di-synthon xbc, while for HRP, the highest
attention weights are attributed to the mono-synthon xb.

learned latent scores λ as a function of the predicted zero probability p. For HRP, we see that all the
molecules with the known pharmacophores have high predicted scores and low zero-probability–the
signal is strong and the noise is low. However, when we turn our attention to the plot for CA-IX, we
see that there are a number of molecules with high learned scores, but also high zero-probability–this
region of the distribution likely contains more noise. Compared to the HRP data, the predicted scores
for the benzene-sulfonamide containing molecules for CA-IX have some uncertainty associated, as
implicated by their predicted zero-probabilities. Additionally, our model has nice interpretability
with respect to the attention module over the synthons, demonstrating that our model correctly picks
out the important synthons.

In Figure 5, we plot the attention distribution over the set of synthon representations of DEL-
Compose. The top set of plots aggregate known pharmacophores, while the bottom set of plots
delineate individual substructure sets. For CA-IX, we see that the attention probabilities are primarily
focused on di-synthon xbc, while for HRP, the attention probabilities are primarily distributed on
the mono-synthon xb. The sulfonamides are on the C position for CA-IX, while the electrophiles
are on the B position for HRP, indicating that both models chose the highest weight to be placed
on synthon embeddings incorporating the correct synthon position. Moreover, the weights on the
important mono/di-synthons are higher for the molecules with the known pharmacophores versus
other molecules in the library. Interestingly, the model for CA-IX chooses the di-synthon xbc, instead
of just the mono-synthon at the C position, which might indicate enrichment of certain di-synthons.

4 Conclusion

In our work, we proposed a novel method for representing DEL molecules leveraging their combina-
torial nature. By incorporating the important experimental factors into our probabilistic model, we
demonstrate the ability for our model to pick out the substructures important for particular proteins
of interest, CA-IX and HRP. While the model learns useful latent variables that correlate to actual
binding properties, we show that our model can also provide interpretable insights for the binding
problem.
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5 Appendix

A Data

We conduct experiments on public DEL data from Gerry et al. [2019], which includes DEL selection
data on two well-studied protein targets: carbonic anhydrase IX (CA-IX) and horseradish peroxidase
(HRP). This DEL is a tri-synthon library, consisting of 8 synthons at the A position, 114 synthons at
the B position, and 118 synthons at the C position (107,616 total molecules) chosen to encourage
chemical diversity of the library. Their data consists of two experimental conditions, one with the
protein target, and one matrix condition that is conducted in the absence of the protein as control. For
CA-IX this dataset includes 2 replicates of matrix data, and 4 replicates of on-target protein data;
while for HRP, this dataset includes 4 replicates of matrix data and 2 replicates of on-target protein
data. Additionally, there is data collected on the pre-selection library, which is an indicator of the
relative abundance of the different DEL members.

Both CA-IX and HRP are proteins with known pharmacophores Gerry et al. [2019]. CA-IX has
a well-known binding motif, benzene-sulfonamide Buller et al. [2011]. In this dataset, there are
two synthons at the C position that includes benzene-sulfonamides, one that is meta-substituted
with respect to the aryl group, and the other which is para-substituted. Studies have shown that the
benzene-sulfonamide substituted at the para position is much more highly active, in general, towards
CA-IX protein Pagnozzi et al. [2022]. Meanwhile, HRP is a enzyme with high affinity for compounds
containing sulfonyl chloride–derived Michael acceptors Gerry et al. [2019], Gan et al. [2013]. In
this dataset, there are three such synthons at the B position that shows high activity, and are the
three synthons we treat as “gold” labels for HRP. These structures are all visualized in Figure 6 in
descending order of affinity.

Figure 6: Known pharmacophores for both CA-IX (top) and HRP (bottom) pictured in descending
order of affinity. For CA-IX, benzene-sulfonamides are known structures to induce affinity. The
substitution of the sulfonamide affects the reactivity of the chemical specie, wherein the para-
substituted constituent is found to be much more active. For HRP, electrophilic Michael acceptors are
known pharmacophores.

B Generalization Experiments

Random splits are not always ideal for testing molecule datasets ??. In order to test the generalizability
of molecule representations, many approaches attempt to split molecule by molecular scaffolds Wu
et al. [2018]. For DELs, rather than generic molecular scaffolding strategies, synthons provide a
natural grouping and separation of the chemical space. By using synthons to split the data, we can test
the generalizability of the model on unseen chemical structures. In the dataset that we are using, the
known pharmacophores are conveniently localized to specific synthons, so we can develop intuitive
splitting strategies. Most of the signal is captured by these pharmacophores, so we cannot withhold
all of these molecules from training. Instead, we split on the synthon position that does not include
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these individual pharmacophores. Specifically, for CA-IX, the benzene-sulfonamides are at the C
position, so we create synthon splits by splitting on the B position. For HRP, the electrophilic Michael
acceptors are at the B position, so we split the data at the C position. Results are shown in Table 2.

B.1 Setup for data-efficiency generalization

To understand more about our models, we introduce a third setup that tests the ability of the model
to adapt under low-resource regimes. Since most of the signal resides in the molecules with known
pharmacophores for their respective targets, we investigate the performance of our model when
we change the amount of data provided to it. This will allow us to determine the quantity of data
required to learn a reasonable model. In particular, these experiments provide a good way to compare
different representational modalities, as we expect that our factorized approach should learn faster
under resource-limited regimes.

Synthon Split Matrix NLL ↓ Target NLL ↓ Sum NLL ↓ PRC-AUC ↑

C
A

-I
X

Diff Enrichment - - - 0.22 ± 0.02
Ratio Enrichment - - - 0.25 ± 0.02
Poisson Enrichment - - - 0.24 ± 0.02
DEL-Compose 3.58 ± 0.34 2.83 ± 0.17 6.41 ± 0.46 0.13 ± 0.01
DEL-Compose (Pre) 3.13 ± 0.13 2.81 ± 0.18 5.94 ± 0.31 0.63 ± 0.42
DEL-Compose (Rep) 3.54 ± 0.29 2.64 ± 0.14 6.19 ± 0.39 0.73 ± 0.33
DEL-Compose (Pre+Rep) 3.11 ± 0.11 2.61 ± 0.14 5.72 ± 0.25 0.75 ± 0.33

H
R

P

Diff Enrichment - - - 0.59 ± 0.01
Ratio Enrichment - - - 0.48 ± 0.01
Poisson Enrichment - - - 0.56 ± 0.01
DEL-Compose 8.09 ± 2.04 7.36 ± 1.28 15.45 ± 3.32 0.85 ± 0.16
DEL-Compose (Pre) 7.44 ± 2.09 6.46 ± 1.35 13.90 ± 3.44 0.85 ± 0.13
DEL-Compose (Rep) 8.75 ± 3.73 7.36 ± 1.69 16.11 ± 5.41 0.88 ± 0.05
DEL-Compose (Pre+Rep) 7.29 ± 2.11 6.26 ± 1.26 13.55 ± 3.36 0.90 ± 0.06

Table 2: Metrics for different variants of DEL-Compose compared to baseline enrichment metrics
on synthon splits. Compared to random splits, the average NLL loss is higher, which confirms our
belief that these are more challenging splits of the data for a model to learn over. Our model still
outperforms baselines and ablations even on these more challenging splits.

Figure 7: Performance of models using factorized representations vs using full molecule representa-
tions. Each model is trained with a different % of the data heldout.
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One of the main benefits of utilizing a factorized model such as DEL-Compose is that we can avoid
building complex enumeration engines for DELs, because we do not require the enumerated full
molecule structure. However, while this is beneficial, we want to demonstrate that our factorized
models can perform competitively, or even better than models that utilize full molecule representations.
To do so, we conduct an in-depth investigation by training both versions of the model under different
data-limiting regimes. In Figure 7, we compare the performance of both models as a function of
amount of data supplied during training. For both CA-IX and HRP, we notice that the multi-class
PR-AUC is superior for the factorized model compared to the full model at each point. Meanwhile,
the test likelihoods for the two models are very comparable as a function of the amount of data
supplied.

These results support the use of factorized representations as a useful inductive bias to achieve more
efficient learning. However, the results are also unsurprising in some sense. The pharmacophores
that describe the molecule classes we use are localized within specific synthons, but this property
may not hold true for an arbitrary protein. Therefore, we expect that this model might require other
improvements or regularizations for more challenging targets and data.
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