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Abstract

Virtual screening is an essential component of early-stage drug and materials
discovery. This is challenged by the increasingly intractable size of virtual libraries
and the high cost of evaluating properties. We propose GNN-SS, a Graph Neural
Network (GNN) powered Bayesian Optimization (BO) algorithm. GNN-SS
utilizes random sub-sampling to reduce the computational complexity of the BO
problem, and diversifies queries for training the model. We further introduce
data-independent projections to efficiently model second-order random feature
interactions, and improve uncertainty estimates. GNN-SS is computationally light,
sample-efficient, and rapidly narrows the search space by leveraging the generaliza-
tion ability of GNNs. Our algorithm achieves state-of-the-art performance amongst
screening methods on the Practical Molecular Optimization (PMO) benchmark.

1 Introduction

Molecular optimization is a key problem in early drug discovery and materials design, wherein the
objective is to retrieve candidate compounds with one or more desirable properties. Some properties
of interest may include target-ligand binding affinities or quantum-mechanical energies. However,
these tasks are often complicated by 1) the combinatorially large size of accessible chemical space,
and 2) the prohibitive cost of evaluating objectives in silico or via experiment. Thus, a first-line
solution is to perform molecular optimization on finite but large virtual libraries, where candidates
can be readily synthesized and validated.

As libraries grow to cardinalities exceeding 109, brute-force enumeration for candidate selection
becomes increasingly infeasible. To address this challenge, one promising strategy is to perform
Bayesian Optimization, a model-based approach that leverages a surrogate function to evaluate
molecular properties. BO techniques are renowned for their ability to rapidly narrow down the search
space to the most desirable molecules. In particular, by modeling molecules as graphs, we can use
BO methods which exploit the graph structure and utilize Graph Neural Networks (GNNs) to capture
the complex molecular properties and improve the sample efficiency of our procedure. However,
deployment of GNNs for BO on graphs is a computationally challenging problem.

Specifically, a significant issue arises when estimating uncertainty in such models, as conventional
neural approaches necessitate updating a corresponding covariance matrix quadratic in the number of
network parameters [Zhou et al., 2020], leading to an inherent trade-off between model expressiveness
and computational feasibility. Additionally, while performing BO with a GNN-based acquisition func-
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tion improves the statistical complexity of the optimization problem, maximizing some acquisition
function over vast discrete libraries is still computationally prohibitive.

We address these challenges by introducing GNN-SS, a light GNN-powered BO algorithm that
randomly sub-samples the domain before optimizing the acquisition function. This reduces the
computational cost and increase the diversity of collected data, which in turn, enhances exploration to
improve the generalization ability of the network. To avoid prohibitive matrix inversions required to
calculate uncertainty estimates we also employ Johnson-Lindenstrauss (JL) random-feature mappings.
In our setting, applying this mapping can be interpreted as sub-sampling the weights of a trained
neural network, yielding tractable matrix inversions.

We then evaluate our algorithm with a limited sampling budget on a domain of commercially available
small-molecules. We observe that when paired with the Upper Confidence Bound (UCB) acquisition
function, our algorithm GNN-SS achieves state-of-the-art performance on the Practical Molecular
Optimization (PMO) benchmark among algorithms for ligand-based virtual screening [Gao et al.,
2022], even outperforming a number of generative de novo algorithms for molecular design.

Related Works. Early work on BO for molecular optimization use hand-designed graph kernels
[Korovina et al., 2020], or map graph representations to a continuous latent space [Gómez-Bombarelli
et al., 2018], to then solve the problem with Gaussian process BO methods, e.g. GP-UCB. Recent
work utilize GNNs, as they exploit the structure of objective functions defined on graphs. Such
approaches require quantifying the uncertainty of neural network estimates, which may be done
by parameterizing the uncertainty itself with a neural network [Graff et al., 2021, Soleimany et al.,
2021], probabilistic ensembles [Kim et al., 2021, Hirschfeld et al., 2020], or directly upper bounding
the uncertainty in the Neural Tangent Kernel (NTK) regime [Kassraie et al., 2022]. These methods
require calculating the acquisition function over the entire domain, and thus, can not be scaled to
large molecular libraries. Building upon Kassraie et al. [2022], we propose a scalable algorithm
which exhibits competitive performance, while reducing the computational complexity of prior work.
To this end, we leverage the simple idea of random sub-sampling, which is grounded in the literature
of unstructured many-armed bandits [Mirzasoleiman et al., 2015, Bayati et al., 2020].

2 Problem Setting

We consider optimization problems on domains of small molecules that emerge in drug or material
design. Small-molecules admit a natural representation as undirected graphs with at most N nodes
[Brown et al., 2019, Du et al., 2022]. This allows us to formulate such optimization problems as
Bayesian optimization on a domain of graphs, where the aim is to optimize an unknown objective
function through sequential queries while receiving noisy function evaluations. The BO objective
function models the unknown molecular property of interest, and querying a graph corresponds to
recommending a molecule to be tested with respect to this property.

At every time step t ∈ {1, . . . , T}, we select a graph Gt from a graph domain G and observe a
noisy evaluation yt = f(Gt) + ϵt, where f : G → R is the objective function and ϵt is i.i.d. zero-
mean sub-Gaussian noise. We denote the history of observations by Ht := {(G1, y1), . . . , (Gt, yt)}.
For a horizon T (i.e., sampling budget), we seek to obtain a small simple regret rT = f(G∗) −
maxt≤T f(Gt), where G∗ ∈ argmaxG∈G f(G). The aim is to attain a regret that vanishes with
T , meaning that rT → 0 as T →∞, which implies convergence to the optimal graph. Evaluating
molecular properties typically requires running costly simulations or experiments with noisy outcomes.
Therefore, we seek a sample efficient algorithm that can identify the optimal molecule with the least
number of oracle calls.

In our applications of interest the number of accessible molecules ranges between 1010-1020 choices
[Nicolaou et al., 2016], and popular virtual databases of commercially available compounds include
up billions of molecules [e.g. ZINC, Irwin and Shoichet, 2005]. Therefore, we assume that the
domain G is a very large finite set of graphs, where |G| ≫ T , meaning that it is infeasible to evaluate
every graph in the domain within the sampling budget of T . Standard BO algorithms for large
unstructured domains [e.g., Auer et al., 2002] cannot be applied to this problem setting, as their
sample complexity grows with poly(|G|).
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3 Method

To obtain a sample efficient algorithm for maximizing the objective function, we need to construct
an estimator for f , using a relatively small number of samples from G. To this end, we utilize three
key ideas. First, we use Graph Neural Networks which are known to be effective models for learning
complex functions defined on graphs. Second, in order to efficiently update our uncertainty over
the network’s outputs we use a random-feature approximation to the NTK. This allows us to employ
rank-one updates in O(tp2) time, where p is the dimension of our random features and corresponds
to the number of network parameters. While previous works [e.g., Zhou et al., 2020, Kassraie et al.,
2022] address this by employing a diagonal approximation to the covariance matrix, we aim to model
second-order covariance structure by utilizing a low-rank approximation to the empirical NTK. As
demonstrated in Figure 2, this helps us draw samples which are informative and yield high reward.
Lastly, we devise a sub-sampling (SS) subroutine that allows for sampling diverse data for training
the network. These techniques come together in our GNN-powered Sub-Sampled BO algorithm
(GNN-SS), sketched in Algorithm 1. The sub-routine TRAINGNN is specified in Algorithm 2.

Algorithm 1 GNN-SS

Input: acq. function α(·), horizon T , warm-start steps T0, random subset size K, batch size
b ≤ K, training epochs E, learning rate η, regularization parameter λ
Initialize: K0 ← λI , θ0 ∼ N (0, Ip), H0 = ∅.

for round t = 1, . . . , T0 do ▷ Exploration Stage
a) Sample random action. Gt ∼ Unif(G) and query yt = f(Gt) + ϵt
b) Add to history. Ht ← Ht−1 ∪ {(Gt, yt)}

end for
θT0
← TRAINGNN(HT0

,θ0, E, λ, η)

KT0
←K0 +

∑T0

t=1

∑b
i=1 g(Gt,i)g

⊤(Gt,i)

for round t = T0 + 1, . . . , T do ▷ Adaptive Stage
1) Sub-sample. Gt ∼ Unif(G) where |Gt| = K

2) Evaluate acquisition. {Gt,i}bi=1← argmaxG∈Gt α(G;Ht−1)
2) Observe noisy reward. yt,i = f(Gt,i) + ϵt,i for i ∈ [b]
3) Append to history. Ht ← Ht−1 ∪ {(Gt,1, yt,1), . . . , (Gt,b, yt,b)}
4) Update surrogate parameters. θt ← TRAINGNN(Ht,θt−1, E, λ, η)

4) Update uncertainty. Kt ←Kt−1 +
∑b

i=1 g(Gi)g
⊤(Gi)

end for

Reward Model. To model molecular properties, we use a graph neural network fGNN(G;θ) : G → R
of width m, where θ ∈ Rp denotes the concatenated vector of network parameters. We initialize
the network with θ0 which has zero-mean Gaussian i.i.d. entries of unit variance, and update it as we
observe more feedback. We maintain a reward surrogate fGNN(G;θt), the GNN trained on the loss

L(θ;Ht) =
1

t

t∑
i=1

(
fGNN(Gi,θ)− yi

)2
2
+mλ∥θ − θ0∥22

where λ is the regularization coefficient. Similar to Kim et al. [2022] and Zhang et al. [2020], we
initialize the network at every step of the BO problem with θt−1, and update the parameters via
gradient descent for E epochs. This is in contrast to earlier work on Neural Bandits which re-initialize
the network to θ0 before running gradient descent [e.g. Zhou et al., 2020, Kassraie et al., 2022].

Uncertainty Quantification. For action-selection policies which require uncertainty quantification,
e.g. UCB [Srinivas et al., 2010], we may use the gradient of the network at initialization to
approximate the uncertainty over f . Following Kassraie et al. [2022], we set

σ̂2
t (G) := g⊤(G)

[
λI +

1

t

t∑
i=1

g(Gi)g
⊤(Gi)

]−1

g(G), (1)

where g(G) = ∇θfGNN(G;θ0) denotes the gradient at initialization. For very wide networks, σ̂t

presents a provably calibrated uncertainty estimate [Kassraie et al., 2022, Theorem 4.2]. In this
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Amlodipine MPO Empirical NTK Tanimoto

1Figure 1: Empirical NTK (K̂) effectively captures shared structure between randomly sampled
molecules of similar reward, and is more informative than the commonly used Tanimoto kernel
(KTan). To obtain g(Gi) we use a Graph Convolutional Network with width 2048, 3 convolutional
layers, and mean readout.

formulation, the Gram matrix with elements K̂ij = g⊤(Gi)g(Gj) performs a similar role as the
kernel matrix when calculating the posterior variance in given a Gaussian Process. For this reason
, among others, the kernel function k̂(G,G′) = g⊤(G)g(G′) is referred to as the empirical Neural
Tangent Kernel. Figure 1 demonstrates that the matrix K̂, effectively encodes the structural similarity
between molecules with similar rewards. In this figure, the left-most matrix has elements 1−|y(Gi)−
y(Gj)|, where y(Gi) is the reward of molecule Gi. Here, reward corresponds to the Amlodipine MPO
objective, which is a function of the number of aromatic rings as well as the ECP4 fingerprint similarity
to the Amlodipine molecule [Brown et al., 2019]. Additionally, we compute a kernel matrix using
the Tanimoto kernel [Tanimoto, 1958], a commonly used similarity metric for sets. When applied to
molecules, this measures the intersection of shared substructures between G and G′, and is computed
as kTan(G,G′) =

∑
i min(h(G)i,h(G

′)i)/
∑

i max(h(G)i,h(G
′)i), where h(G) ∈ {0, 1}|V | is a

vector indicating the presence or absence of substructures in G from a finite vocabulary V .

Numerical Approximation. Computing the uncertainty estimates introduced in (1) requires p× p
matrix inversions, where p denotes the number of trainable parameters in the GNN. This operation
is the memory and computation bottleneck of the algorithm, and quickly becomes intractable for
even modest-sized networks. A common approach in neural bandit algorithms is to use a diagonal
approximation of the matrix g(Gi)g

⊤(Gi), leading to updates linear in the number of parameters
O(p) [Zhou et al., 2020]. Asymptotically, for large enough width m, this is a valid mean-field
approximation as the parameters become independent [Yang, 2020]. However, for finite neural
networks of practical size, this assumption becomes vacuous. Instead, we apply a data-independent
random projection S : Rp → Rd, with d≪ p, to reduce the dimensionality of this matrix. We sample
S from an appropriate distribution, such that it is a Johnson-Lindenstrauss (JL) linear map [Johnson
and Lindenstrauss, 1984], as JL maps can be designed to satisfy

|⟨Sg(G), Sg(G′)⟩ − ⟨g(G), g(G′)⟩| ≤ ϵD,

if d ≥ 4ϵ−2
D log(1/δ), where ϵD is the distortion error and δ ∈ (0, 1) is the confidence level [Johnson

and Lindenstrauss, 1984]. Therefore, by specifying a small projected dimension d, we can control
the distortion error that propagates into the uncertainty quantification formula. Setting g̃(·) = Sg(·)
we then define the cheap uncertainty estimates as

σ̃2
t (G) := g̃⊤(G)

[
λI +

1

t

t∑
i=1

g̃(Gi)g̃
⊤(Gi)

]−1

g̃(G). (2)

Calculating σ̃2
t now only requires inverting a d × d matrix. Proposition 3 in Appendix A proves

that the approximated empirical NTK defined as k̃(G,G′) = g̃⊤(G)g̃(G′), is with high probability
close to k(G,G′) the empirical NTK for every pair of graphs (G,G′) ∈ G × G. We also empirically
observe that the numerical error introduced due to using g̃ instead of g is negligible, for practical
values of d. This is expected, due to the closeness of the two corresponding kernels.

Speeding Up Approximation. The canonical construction of S is to use a dense matrix of i.i.d. Gaus-
sian entries, requiring O(pd) time to obtain g̃(G) [Johnson and Lindenstrauss, 1984]. Instead, we

4



employ two computationally-efficient variants. The first is a Fast JL (FJL) variant requiringO(p log p)
time to obtain g̃(G) [Ailon and Chazelle, 2009],

SFJL = PHD

Here, P ∈ Rd×p is a sparse random matrix with elements Pij ∈ {0,
√
p/d} and ∥Pi∥∞ =

√
p/d.

H ∈ Rp×p is a Walsh-Hadamard matrix with Hij ∈ {−1, 1}, and D ∈ Rp×p is a diagonal matrix
with Rademacher entries Dii ∈ {−1, 1}. Our second row sub-sampling variant (Sub) is simply

SSub = P.

This variant is inspired by [Weinberger et al., 2009, Yang et al., 2015] and requires only a time of
O(d). The distortion using this variant can also be controlled with high probability when the mass
along coordinates of g(G) is sufficiently uniform, i.e. when ∥g(G)∥∞/∥g(G)∥2 is sufficiently small
for all G ∈ G [Freksen, 2021]. Table 1 summarizes runtime of each of our uncertainty estimators
when rank-one updates are employed.

Acquisition Functions. Given our reward surrogate fGNN(· ;θt) and uncertainty estimator σ̃t(·),
we construct the following acquisition functions,

αGreedy(G;Ht) = fGNN(G;θt−1),

αUCB(G;Ht) = fGNN(G;θt−1) + βσ̃t−1(G)

Here, the GREEDY acquisition function directly uses the reward surrogate as a proxy for the true
unknown reward. The UCB function considers an optimistic estimate of the reward by adding the
uncertainty estimate to the reward estimate. The parameter β is the exploration coefficient which
controls the level of optimism.

Random Sub-sampling. The common approach to action selection is to choose Gt via
maxG∈G α(G;Ht). However, this will require evaluating α for all members of G, which comes with
a high computational burden when working on large virtual libraries. We utilize a sub-sampling
routine where at every step t we first draw a random subset Gt ⊂ G, where |Gt| ≪ |G|. We then
rank the members of Gt according to our acquisition function and query the top-b graphs, i.e.
{Gt,i}bi=1 ← argmaxG∈Gt

α(G;Ht). Choosing b > 1 yields a simple batched variant of GNN-SS.
While this is primarily done to avoid the cost of training, such a procedure could also correspond
to a setting in which we sample and rank candidates from a generative model.

The advantage of random sub-sampling is threefold. 1) It saves computations at each round, by
allowing us to evaluate α(·;Ht) only over K = |Gt| molecules. 2) Sub-sampling limits the number
of graphs available for query, including more promising molecules which drive GNN-SS to exploit.
This implicitly encourages exploration, which is believed to be beneficial on large finite domains with
complex objectives [Bastani and Bayati, 2020]. 3) This additional exploration helps build a diverse
dataset Ht for training fGNN in the future steps, and in turn, yields an accurate reward estimator
fGNN(G;θt−1) that generalizes well over the entire domain. The choice of K is crucial to balancing
exploration and exploitation. Moreover, it should be chosen such that the probability of not ever
sampling the optimal molecule is small. In our experiments we choose it roughly as O(

√
T ), more

details are included in Appendix B.

Exploration Stage. We start the algorithm with an exploration stage, during which we randomly
query a small number (∼ 102) of molecules. The idea of an exploratory stage stems from the
high-dimensional bandit literature [e.g., Hao et al., 2020, Bastani and Bayati, 2020], where additional
exploration is required to obtain an accurate estimate of the reward.

Estimator Runtime

Full O(Np2)
Diagonal O(Np)
Sub O(Nd2 +Nd)
FJL O(Nd2 +Np log p)

Table 1: Uncertainty estimates via approximate random-features g̃, yielding covariance matrices with
second-order structure. N = tb, where t is the number of rounds, b is batch-size. JL variants project
g ∈ Rp to g̃ ∈ Rd, where d < N .
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Figure 2: GNN-SS Top-10 Mean Reward. Projection dimension is d = 2048 for both Sub and FJL
variants for uncertainty estimator σ̃t(·). Bold horizontal line shows ZINC-250K maximum and the
gray region above GNN-SS-Oracle is unreachable by sub-sampled algorithms.

4 Results

We perform experiments on ZINC [Irwin and Shoichet, 2005], a dataset of 250k small organic
molecules that is commonly used for benchmarking algorithms for molecular optimization [e.g., in
Gao et al., 2022, Kim et al., 2022, Graff et al., 2021]. Our experiments demonstrate the application
of GNN-SS for virtual screening on these datasets, based on molecular properties which are of
interest in drug and materials design. In these experiments, we consider all 23 molecular objectives
of the PMO benchmark [Gao et al., 2022], which include commonly used scores such as quantitative
estimate of drug-likeness (QED) [Bickerton et al., 2012]. To model these objectives, we employ
a vanilla Graph Convolutional Network (GCN) similar to Graff et al. [2021] and for training use
different sets of hyper-parameters (details in Appendix B). Reported results are averaged across
5 runs with different random seeds, plotted together with the standard error. Figure 2 shows the
performance of GNN-SS paired with UCB, and GREEDY policies on 4 objective functions. Regret
plots for additional reward functions are given in Appendix C.

We limit the horizon to a realistic sampling budget, and for every t, we compute the top-1 reward,
i.e. maxs≤t f(Gs) the value of the highest scoring molecule queried so far, as well as the top-10
mean reward. As a sanity check, we also run SS-Rand which simply draws a random graph from
Gt, and SS-Oracle which has oracle knowledge of f and queries argmaxG∈Gt f(G) after random
sub-sampling. A sub-sampled policy cannot achieve a performance higher than SS-Oracle, and
should perform better than SS-Rand.
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Figure 3: GNN-SS-UCB and GNN-UCB Top-10 Mean Reward. Random subsampling in GNN-SS
encourages acquisition of diverse molecules early on during optimization. GNN-UCB evaluates the
acquisition function α(· ;θt) on the full ZINC-250K dataset.

To compare our algorithm to prior work we use the PMO benchmark, in which the total number
of queried molecules, i.e. the number of oracle calls, is restricted to a budget of T = 10, 000.
This benchmark considers 29 algorithms for virtual screening, and evaluates the performance of
each by area-under-the-optimization-curve (AUC, as plotted in Figure 2), summed across the 23
objective functions. As reported in Table 3, GNN-SS achieves state-of-the-art performance among
non-generative models, including MOLPAL, ranking 4th overall in sample efficiency among the
29 algorithms considered in this benchmark. Importantly, GNN-SS outranks several generative
algorithms which go beyond ZINC for maximizing the properties of interest, e.g. SMILES-LSTM
Brown et al. [2019] and MARS Xie et al. [2021].

As observed in Figure 2 and Table 2, Sub and FJL variants of our algorithm obtain higher reward
molecules overall, ranking 8th and 7th respectively, and first among screening methods. We conjecture
that enacting GNN-SS with an uncertainty estimator which models second-order covariance structure
allows us to retrieve diverse molecules early during optimization. At the cost of sample efficiency,
this improves our surrogate reward estimates, ultimately leading GNN-SS to obtain higher reward
molecules.

Our random sub-sampling routine in GNN-SS is partly justified by an experiment in which the
acquisition function is evaluated for every member of the domain G. As shown in Figure 3, for
certain objectives GNN-SS-UCB achieves improved sample efficiency compared to an expensive
variant without sub-sampling.

MOLECULAR
OBJECTIVE

MOLPAL GNN-SS
GREEDY

GNN-SS
UCB (DIAG)

GNN-SS
UCB (SUB)

GNN-SS
UCB (FJL)

TOP-1 SUM 12.84 13.99 14.19 14.27 14.38
n/29 RANK 17 11 10 8 7

Table 2: Summary PMO benchmark Top-1 Reward with different uncertainty estimators. Top-1 Sum
aggregates all 23 objectives. GNN-SS-UCB with an FJL approximation of σ̃t outperforms other
variants and screening methods, obtaining molecules with higher reward. Full table in Appendix C.

5 Conclusion

We presented GNN-SS, a Graph Neural Network BO algorithm that draws on sub-sampling
and random feature projections, to present a scalable solution to the problem of screening large
virtual libraries. We demonstrated that GNN-SS achieves competitive performance on the PMO
benchmark for sample-efficient molecular optimization. Our results show how GNN-powered
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Bayesian Optimization may be deployed with datasets of 106 molecules. However it remains an
open problem to scale BO to virtual databases with billions of molecules, or efficiently go beyond
a library and perform de novo design using generative models.
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A Closeness of Random Feature Approximations

As detailed in Kassraie et al. [2022], since a large finite-width neural network behaves approximately
as a linear function in feature space, it can be used in place of the posterior mean of a GP, with the NTK
associated to the same architecture as its covariance. Training of the former yields an approximate
solution to kernel ridge-regression with the NTK, while the latter yields a solution that is exact.
Likewise, one may approximate the posterior covariance with explicit features g(G) = ∇θf(G; θ).
We now restate a central lemma that formalizes the error’s dependence on hidden-width m for given
depth L.
Lemma 1 (Finite-width Approximation to the NTK [Arora et al., 2019](Thm. 3.1)). Let node
features xG,x

′
G ∈ Sd−1 be restricted to the hyper-sphere, and consider an appropriately initialized

neural network of depth L with ReLU layer-activations of max(0,x). Fix error ϵA > 0, δA ∈ (0, 1).
Then for minimum hidden width mmin ∈ Ω(L6ϵ−4

A log(L/δ)), the following bounds the error of the
empirical NTK at initialization, and holds with probability at least 1− δA

|⟨g(G), g(G′)⟩ − k(G,G′)| ≤ (L+ 1)ϵA.

When m is large, this allows us to employ the following as a provably calibrated uncertainty estimate,

σ̂2
t (G) = g⊤(G)

(
λI +

t−1∑
i=1

g(Gi)g
⊤(Gi)

)−1

g(G) = g⊤(G)
(
λI + J⊤

t Jt

)−1
g(G)

Here, Jt = [∇θf(Gi; θ)]i<t is the Jacobian with t − 1 rows, and each row contains the gradient
vector g(Gi). This admits rank-one updates via the matrix inversion lemma. However, the benefit is
not immediately clear as the outer-product g(G)g⊤(G) is prohibitive for even shallow, small-width
networks, requiring O(m2) memory and O(m6) effort to invert. Practical implementations of neural
bandit algorithms that use this construction have therefore addressed expensive inversions by ignoring
higher-order covariance structure and taking a diagonal approximation to g(G)g⊤(G), leading to
updates linear in the number of parameters O(p). Instead, we propose an alternative approximation
that yields valid confidence sets for optimistic bandit policies.

We now outline Johnson-Lindenstrauss (JL) type projections [Johnson and Lindenstrauss, 1984].
These projections are data-independent and are generated under a random linear map S : Rp → Rd,
where d ≪ p. Importantly, the distortion of these projections can be controlled for some choice
of rank d, which must be greater than dmin for some distortion error ϵD and confidence δD. The
following celebrated lemma bounds the distortion using such a projection.

Lemma 2 (JLL [Johnson and Lindenstrauss, 1984]). Set ϵD ∈ (0, 1/2) and let dmin ≥ 4ϵ−2
D log(1/δ).

There exists a matrix S ∈ Rd×p that w.h.p. preserves Euclidean norms, i.e. simultaneously for all
x ∈ Rp, S satisfies the following with probability greater than 1− δD

∥Sx∥2 ∈
[
(1− ϵD)∥x∥2, (1 + ϵD)∥x∥2

]
A corollary of Lemma 2 can also be obtained for squared-norms via the parallelogram law, where
the original lemma is applied to norms found in the following,

⟨Sx, Sx′⟩ = 1

4
(∥S(x− x′)∥+ ∥S(x+ x′)∥)

For any given d > dmin, this has been shown to preserve the original bound up to the same constant
factor [Kaban, 2015](Thm 2.1). And in the setting where we directly use the network gradients
g(G) ∈ Rp to approximate the NTK, we can make use of this to guarantee that for large enough
d, the following bound on the distortion error ϵD also holds with high probability,

|⟨Sg(G), Sg(G′)⟩ − ⟨g(G), g(G′)⟩| ≤ ϵD

Now, by the union of events in Lemma 1 and Lemma 2, the following inequality will control the
combined distortion ϵD and approximation error ϵA of the empirical NTK when obtained by a rank-d
projection of the p-dimensional random feature map g(G).
Proposition 3 (Approximation Error of Randomly Projected Empirical NTK). Set δ ∈ (0, 1) and
fix a choice of projection dimension d ∈ [ϵ−2

A log(1/δ), p]. Denote α = 2δ − exp(−dϵ2D/8). Then
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for minimum width mmin ∈ Ω(L6ϵ−4
A log(L/α)), the following bound holds with probability at least

1− δ,

|⟨g̃(G), g̃(G′)⟩ − k(G,G′)| ≤ ϵ

where ϵ := (L+ 1)ϵA + ϵD.

We have used g̃(G) = Sg(G) to denote the random projection of g(G). Let exp(−dϵ2D/8) and
L exp(−mϵ4A/L

6) be the confidence levels introduced in Lemma 2 and Lemma 1. We require

2δ ≤ L exp(−mϵ4A/L
6) + 2 exp(−dϵ2D/8)

which is satisfied by choosing a minimum width mmin ≥ L6ϵ−4
A log(L/(2δ − exp(−dϵ2D/8))) for

some fixed projection dimension d.

B Experiment Details

We use the ZINC dataset provided in pyTDC, objectives are evaluated using oracles from the
same library Huang et al. [2021]. For a fair comparison to MolPAL, we use similar parameters
m = 384, L = 3 graph convolutional layers and no positional encodings, corresponding to
GNN-SS (Diag, NoLap) in Table 3. The regularization coefficient is chosen via a grid-search
λ ∈ {0.1, 0.01, 0.001, 0.0001, 0.00001}. We use λ = 0.0001. We select the best performing
exploration coefficient β via a grid-search over {0.001, 0.01, 0.1, 1.0}. The size of randomly sub-
sampled set |Gt| is set as K = 4000. Following Gao et al. [2022], we use T0 = 500. For remaining
experiments that aim to compare different numerical approximations, we use k = 4 absolute graph
Laplacian positional encodings [Dwivedi et al., 2023], and choose hidden dimension m = 512.

Graph Laplacian positional encodings are eigenvectors of the symmetrically normalized graph
Laplacian ∆ = I −D−1/2AD−1/2. A and D are the adjacency and degree matrices, respectively.
From the matrix of eigenvectors U ∈ RN×N , we take k < N eigenvectors, which are concatenated
directly to node features as X ← concat(X,Uk), where Uk is an N × k matrix. To address the sign
ambiguity of the eigenvectors we take their absolute value [Dwivedi et al., 2023].

The network parameters are initialized with iid. unit Gaussian entries, and following the procedure of
Graff et al. [2021], pre-trained offline for each reward on 500 molecules. We limit training to 250
epochs, with batchsize 250. Early-stopping is used with a patience of 25 iterations without improve-
ment on the validation set. We use MSELoss with lr = 1e-5 and a linear decay towards 1e-6. ϕ =
ReLU non-linearities are applied between each hidden layer. We modify the pytorch_geometric
library Fey and Lenssen [2019] to make use of the neural tangent parameterization for all GCNConv
layers, where cϕ =

√
2 and ml is the width of the l-layer weights. Using the neural-tangent

parameterization ensures a limiting NTK that converges. Each convolutional layer is defined as

f
(l)
GCN(X,A) =

√
2

m
ReLU

(
∆X(l−1)W (l)

)
The graph representation is obtained as X̄ = cat(X̄mean, X̄sum) before passing to a final linear layer,
i.e. the concatenation of the mean-readout and sum-readout. We note that for the random seed used
in our experiments, the subset Hoff ⊂ G for the VALSARTAN SMARTS objective only contains
molecules with zero reward, and thus the model is not expected to generalize to unseen molecules
with non-zero reward.
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Algorithm 2 TrainGNN

Input: history Ht, initial parameters θ, training epochs E, batchsize b, learning rate η, regulariza-
tion λ

Define: MSE Loss L(θi) from Section 3
Initialize: θ(0) ← θ, fGNN(·;θ(0)), optimizer Adam(L)

for epoch i = 1, . . . , E do
Batch B = {(y(Gi), Gi)}b ∼ Ht

Update parameters, θ(i+1) ← Adam(B, fGNN(· ;θ(i)))
end for

C Additional Results

Molecular
Objective MolPAL GNN-SS

(Diag, NoLap)
GNN-SS

(Diag)
GNN-SS

(SJL)
GNN-SS

(FJL)

albuterol sim. -* 0.640 ± 0.017 0.639 ± 0.012 0.630 ± 0.016 0.642 ± 0.020
amlodipine mpo 0.621 ± 0.010 0.543 ± 0.007 0.581 ± 0.010 0.597 ± 0.013 0.660 ± 0.010
celecoxib redisc. 0.496 ± 0.002 0.436 ± 0.008 0.438 ± 0.008 0.440 ± 0.008 0.434 ± 0.008
deco hop 0.804 ± 0.019 0.874 ± 0.016 0.871 ± 0.004 0.871 ± 0.003 0.872± 0.003
drd2 0.902 ± 0.007 0.972 ± 0.011 0.951 ± 0.019 0.943 ± 0.024 0.918 ± 0.010
fexofenadine mpo 0.704 ± 0.001 0.744 ± 0.008 0.740 ± 0.009 0.743 ± 0.008 0.748 ± 0.006
gsk3b 0.776 ± 0.002 0.862 ± 0.086 0.763 ± 0.042 0.767 ± 0.039 0.742 ± 0.045
isomers c7h8n2o- 0.832 ± 0.005 0.979 ± 0.016 0.977 ± 0.019 0.968 ± 0.036 0.949 ± 0.041
isomers c9h10n2- 0.361 ± 0.009 0.785 ± 0.023 0.782 ± 0.027 0.780 ± 0.022 0.786 ± 0.021
jnk3 0.457 ± 0.024 0.552 ± 0.051 0.479 ± 0.065 0.500 ± 0.046 0.437 ± 0.047
median1 0.301 ± 0.000 0.303 ± 0.012 0.311 ± 0.009 0.313 ± 0.010 0.312 ± 0.010
median2 0.266± 0.000 0.275 ± 0.012 0.275 ± 0.010 0.273 ± 0.008 0.264 ± 0.009
mestranol sim. 0.708± 0.006 0.864 ± 0.029 0.785 ± 0.083 0.770 ± 0.085 0.765 ± 0.078
osimertinib mpo 0.803± 0.001 0.803 ± 0.004 0.804 ± 0.002 0.804 ± 0.002 0.804 ± 0.002
perindopril mpo 0.495± 0.003 0.463 ± 0.004 0.538 ± 0.012 0.532 ± 0.011 0.535 ± 0.010
qed 0.942± 0.000 0.947 ± 0.000 0.947 ± 0.000 0.947 ± 0.000 0.947± 0.000
ranolazine mpo 0.515± 0.007 0.556 ± 0.011 0.571 ± 0.006 0.567 ± 0.011 0.573 ± 0.005
scaffold hop 0.518± 0.001 0.524 ± 0.002 0.521 ± 0.003 0.519 ± 0.003 0.518 ± 0.004
sitagliptin mpo 0.100± 0.013 0.478 ± 0.001 0.393 ± 0.041 0.397 ± 0.030 0.367 ± 0.001
thiothixene red. 0.356± 0.000 0.391 ± 0.012 0.380 ± 0.015 0.381 ± 0.011 0.375 ± 0.013
troglitazone red. 0.290± 0.000 0.326 ± 0.000 0.315 ± 0.022 0.326 ± 0.023 0.328 ± 0.021
valsartan smarts 0.000± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
zaleplon mpo 0.262± 0.004 0.514 ± 0.016 0.521 ± 0.017 0.534 ± 0.020 0.513 ± 0.013

Top-1 AUC sum 12.21 13.83 13.58 13.65 13.49
n/29 rank 10 4 7 5 8

Table 3: Full PMO benchmark results: Top-1 AUC. The maximum reward for the Albuterol
Similarity in the benchmark dataset is 0.666, but reported value in Gao et al. [2022] exceeds it.
(NoLap) denotes no Laplacian positional encodings.
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Molecular
Objective MolPAL GNN-SS

(Diag, NoLap)
GNN-SS

(Diag)
GNN-SS

(Sub)
GNN-SS

(FJL)

albuterol sim. -* 0.653 ± 0.017 0.667 ± 0.007 0.660 ± 0.014 0.653 ± 0.017
amlodipine mpo 0.651 ± 0.043 0.556 ± 0.012 0.597 ± 0.012 0.604 ± 0.006 0.678 ± 0.011
celecoxib redisc. 0.511 ± 0.041 0.450 ± 0.008 0.450 ± 0.008 0.451 ± 0.007 0.458 ± 0.000
deco hop 0.860 ± 0.102 0.878 ± 0.001 0.876 ± 0.002 0.877 ± 0.001 0.877 ± 0.002
drd2 0.964 ± 0.709 0.983 ± 0.010 0.976 ± 0.034 0.980 ± 0.005 0.981 ± 0.001
fexofenadine mpo 0.709 ± 0.006 0.756 ± 0.005 0.756 ± 0.002 0.756 ± 0.002 0.756 ± 0.002
gsk3b 0.820 ± 0.128 0.904 ± 0.089 0.847 ± 0.024 0.854 ± 0.022 0.860 ± 0.014
isomers c7h8n2o- 0.882 ± 0.163 1.000 ± 0.006 1.000 ± 0.006 1.000 ± 0.019 1.000 ± 0.017
isomers c9h10n2- 0.391 ± 0.091 0.821 ± 0.013 0.822 ± 0.033 0.822 ± 0.033 0.869 ± 0.000
jnk3 0.608 ± 0.117 0.620 ± 0.030 0.551 ± 0.079 0.566 ± 0.067 0.620 ± 0.005
median1 0.309 ± 0.028 0.315 ± 0.009 0.321 ± 0.006 0.315 ± 0.007 0.321 ± 0.006
median2 0.273 ± 0.021 0.291 ± 0.004 0.291 ± 0.003 0.284 ± 0.009 0.291 ± 0.004
mestranol sim. 0.733 ± 0.081 0.886 ± 0.041 0.845 ± 0.082 0.886 ± 0.012 0.824 ± 0.050
osimertinib mpo 0.816 ± 0.020 0.807 ± 0.004 0.806 ± 0.001 0.806 ± 0.002 0.806 ± 0.002
perindopril mpo 0.504 ± 0.020 0.483 ± 0.005 0.560 ± 0.002 0.555 ± 0.009 0.551 ± 0.006
qed 0.948 ± 0.002 0.947 ± 0.000 0.947 ± 0.000 0.947 ± 0.000 0.948 ± 0.000
ranolazine mpo 0.556 ± 0.064 0.577 ± 0.013 0.586 ± 0.002 0.581 ± 0.009 0.586 ± 0.002
scaffold hop 0.525 ± 0.016 0.526 ± 0.001 0.526 ± 0.001 0.526 ± 0.001 0.526 ± 0.001
sitagliptin mpo 0.117 ± 0.030 0.478 ± 0.000 0.463 ± 0.025 0.474 ± 0.008 0.478 ± 0.006
thiothixene red. 0.361 ± 0.016 0.408 ± 0.005 0.401 ± 0.014 0.404 ± 0.009 0.401 ± 0.013
troglitazone red. 0.296 ± 0.013 0.370 ± 0.008 0.346 ± 0.030 0.357 ± 0.026 0.370 ± 0.014
valsartan smarts 0.000± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
zaleplon mpo 0.286 ± 0.064 0.533 ± 0.014 0.556 ± 0.014 0.561 ± 0.012 0.528 ± 0.007

Top-1 sum 12.84 14.24 14.19 14.27 14.38
n/29 rank 17 10 11 8 7

Table 4: Full PMO benchmark results: Top-1 Reward. Standard errors are computed with 5
seeded replicates. (NoLap) denotes no Laplacian positional encodings.
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Figure 4: GNN-SS Top-10 Mean Reward for all 23 objectives on the PMO benchmark.
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