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Abstract

We introduce a new novel dataset named PiNUI: Protein Interactions with Nearly
Uniform Imbalance. PiNUI is a dataset of Protein–Protein Interactions (PPI)
specifically designed for Machine Learning (ML) applications that offer a higher
degree of representativeness of real-world PPI tasks compared to existing ML-
ready PPI datasets. We achieve such by increasing the data size and quality, and
minimizing the sampling bias of negative interactions. We demonstrate that models
trained on PiNUI almost always outperform those trained on conventional PPI
datasets when evaluated on various general PPI tasks using external test sets. PiNUI
is available here .

1 Introduction

Proteins are nanomachines that carry out the majority of cellular processes. They frequently work
in concert to carry out their functions. Thus, identifying which proteins interact with one another
is key to understanding fundamental cellular processes. Since experimental validation of PPIs is
a cumbersome task, prediction typically provides the first step in PPI elucidation. Accurate PPI
prediction can help identify disease mechanisms. For example, finding proteins of pathogenic bacteria
that interact with human proteins can help in developing drugs that inhibit these interactions.

We recognized that the quality of the training set is paramount when it comes to Protein-Protein
Interaction prediction. Factors such as the data power, the strength of supporting evidence for positive
labels, and particularly the methodology employed to generate negative labels are all expected to
significantly influence the subsequent models’ ability to 1) perform effectively and 2) generalize to
real PPI scenarios across different contexts and organisms.

For this reason, we assert that the pursuit of PPI research through Machine Learning necessitates a
novel dataset—one characterized by increased sample size and reduced selection bias in negative
labels.

In this study, we conduct a comparative analysis between models trained on two widely employed
datasets in Machine Learning research for PPI and models trained on PiNUI. This comparison
encompasses evaluations on their respective test sets, as well as the assessment on a collection of
newly curated test sets from diverse sources, specifically tailored to evaluate cross-species interactions.
This extension is a departure from the models’ initial training, which focused solely on intra-species
interactions.
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2 Previous work

2.1 Baseline Datasets

We utilize two prominent baseline datasets in this study: Guo’s dataset [1], which focuses on Protein-
Protein Interactions (PPI) in yeast, and Pan’s dataset, which centers on PPI in humans. These datasets
have been widely adopted in machine learning applications for PPI and serve as reference benchmarks
for protein language models, such as PEER [2].

Guo’s dataset is employed for training, validation, and testing, using the predefined splits provided by
PEER. Positive interactions are extracted from the Database of Interacting Proteins (DIP). To create
negative interactions, random pairs of proteins are selected, ensuring that they belong to different
cellular compartments.

Similarly, Pan’s dataset [3] is used for training, validation, and testing, following the splits provided
by PEER. Positive interactions are sourced from the Human Protein Reference Database (HPRD).
Negative interactions are generated by selecting random pairs of proteins from distinct cellular
compartments.

Furthermore, we merged the Guo and Pan datasets to create a composite dataset referred to as
Guo+Pan. This combination serves a dual purpose: first, to investigate whether models trained on
two intra-species interaction datasets exhibit improved performance in inter-species interactions, and
second, to augment the overall dataset size.

3 PiNUI

Motivation: Our goal is to encourage models to learn PPI prediction primarily from the co-occurrence
of input proteins within a pair, rather than relying on the occurrence of individual proteins.

Positive interactions within PiNUI are exclusively sourced from the European Bioinformatics Insti-
tute’s intAct [4] interactome, parsed according to the miXML2.5 [5] specification. Initially, our focus
is on two organisms: Homo sapiens (Taxonomy id: 9606), referred to as Human, and Saccharomyces
cerevisiae (Taxonomy id: 559292), referred to as Yeast.

3.1 Negative set

In both the baseline and PiNUI datasets, the positive set is formed based on the presence of experi-
mental evidence confirming an interaction between pairs. However, there are notable differences in
the curation strategy employed for the negative set, which we elucidate as follows:

• We select sequences exclusively from the positive sequence pairs. We do not include
sequences from Negatomes or choose random sequences from the organism that are not part
of at least one positive pair. This approach is intentional to prevent any negative bias toward
sequences that exclusively appear in the negative set.

• In previous studies, we noticed a recurring pattern where a specific sequence frequently
appeared in positive pairs while never being part of a negative pair. Conversely, the reverse
situation also occurred frequently. This intrinsic bias stemming from the dataset’s structure
has the potential to mislead the model into forming an inaccurate association between a
particular sequence and a seemingly spurious label frequency. This, in turn, hinders the
model from effectively relying on the co-occurrence of sequences as expected. While
creating PiNUI, our aim was to maintain a uniform ratio of positive to negative labels
per sequence. This means that sequences linked to positive interactions should exhibit a
proportional presence in negative interactions. Let S be the set of sequences involved in
positive interactions. Let P = {(a, b)|a, b ∈ S} be the set of positive pairs. In order to
guarantee this proportionality, for each positive pair (a, b) ∈ P , we create one negative
pair (a, x) where x ∈ S \ {t|(a, t) ∈ P, t ∈ S}, and one negative pair (y, b) where
y ∈ S \ {t|(t, b) ∈ P, t ∈ S}. While this strategy does introduce label imbalance, it does
so systematically on a per-protein basis. As a result, it yields a nearly uniform distribution
of (im)balanced labels across proteins, a feature we anticipate will be advantageous for the
model.
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• We do not omit interologs [6], i.e. PPIs where the two protein partners are homologous to
another pair of interaction members, through the process of sequence clustering. The model
can learn from such cases, since even small variations in sequence can have a major impact
on the structure, and thereby PPI interaction.

• We do not use subcellular localization as a gold standard for negatives. Most of the existing
datasets [1][7] use cellular localization annotations or predictions to find negative pairs,
assuming that if proteins live in different cell compartments they cannot interact. We
argue that while this may be a reasonable constraint in vivo, the identity of the native
physical compartment should not preclude interactions between proteins in other contexts
such as therapeutics and food systems. We want our dataset to be as general as possible.
Proteins in different subcellular localization, thus are presumably not interacting in vivo, but
could interact in a cell-free environment, or in a different organism (for instance, in case
they are heterlogously expressed in a host organism, where localization is not preserved).
Furthermore, it is important to note that researchers have demonstrated [8][9][10] the
high accuracy of Protein Language Model (LM) in predicting subcellular localization.
Systematically labeling pairs of proteins from different subcellular localizations as negatives
may inadvertently lead models to learn a proxy for subcellular localization rather than
genuine protein interactions. Hence, we advocate for a more inclusive approach in defining
negative interactions in order to foster a dataset that better reflects the complexity and
versatility of protein-protein interactions.

3.2 PiNUI:yeast

To construct PiNUI:yeast we curated all positive and negative interactions provided in the interac-
tome from intAct. There are 43, 966 unique positive interactions and 4 evidence-backed negative
interactions that contain proteins of length shorter than 1, 022 (intrinsic limit of the esm representtion
model). From this set we have removed all the interactions involving at least one of the test 393
sequences from the test split of Guo provided by PEER, so that we may be able to use this test across
multiple methods. Finaly, we generate the negative set following the method described in 3.1.

3.3 PiNUI:human

Following the same process as in PiNUI:yeast, the curation of the human interactome left us with
229, 135 positive and 888 negative pairs (before generating the negative set as described in 3.1).

3.4 Test sets

• Human receptors: For this test set (N = 60), a compilation of literature-documented
receptors from the human proteome was constructed by integrating a non-redundant dataset
of proteins from CellTalkDB [11] and the human gpDB [12]. This compilation was used as a
positive set. The negative set was constructed similarily to the Human–non-human test sets,
where proteins from each side of the positive pair was replaced by a random counterpart of
similar or same organism.

• Human–non-human: For testing purposes, we designed and curated two datasets focusing
on human–non-human protein interactions. The first dataset (N = 390) was constructed
through a query of the Research Collaboratory for Structural Bioinformatics’ Protein Data
Bank (PDB). We specifically sought experimentally validated structures of heterodimers,
where one protein belongs to Human, and the other originates from a non-human organism.
Experimental methods were restricted to nuclear magnetic resonance (NMR), Electron-
Microscopy (EM) or X-ray diffraction. These instances constituted our positive pairs. To
create a negative set, we took all the positive pairs and systematically substituted the human
proteins with randomly sampled human proteins. Similarly, we generated another negative
set by replacing non-human proteins with randomly chosen non-human proteins, sourced
from a pool of bacteria and plant proteins, as these align with the non-human proteins present
in the positive set. Our objective here was to demonstrate the model’s ability to predict PPIs
where one protein within a pair (the Human one) has representation in the training set, while
the other originates from a distinct species. Creating a negative set in such a manner allows
us to test that proteins seen in positive pairs can be predicted in a negative pair when the
other participant doesn’t interact with them. In other words, we want to test that the positive
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labels are not solely associated with proteins in positive pairs, but with a combination of
interacting proteins. This method yields a 1:2 (positive:negative) label balance; for this
reason, we use the AUC-ROC as our main performance metric, as it is still relevant to use
on lightly imbalanced datasets as such.
The second human-non-human test (N = 292) set was generated using a similar approach
with orthogonal experimental validations. In this case, we utilized the European Bioinformat-
ics Institute’s intAct database to assemble positive pairs. Our criterion for inclusion was the
occurrence of heterodimers, where one protein belongs to Human while the other does not.
Notably, the key distinction lays in the difference of experimental methods used to gather
PPI evidence, including antitag co-immunoprecipitation, multiple variants of two-hybrid
assays, and other methodologies that did not overlap with the PDB dataset.

• Human-SARS-CoV2: Similar to Human–non-human, sourced from intact, and specifically
restricting non-human proteins to come from SARS-CoV2 (N = 1, 492).

• Human–Yeast: Similar to Human–non-human, sourced from intact, and specifically re-
stricting non-human proteins to come from Yeast (N = 468).

• Human–Mouse: Similar to Human–non-human, sourced from RCSB, and specifically
restricting non-human proteins to come from Mus musculus (N = 78).

4 Comparison

In order to demonstrate the benefits of our dataset, we trained the same Neural Network (3-layers
MLP) on Guo’s, Pan’s, and PiNUI’s datasets. To represent the protein sequences, we use Meta’s
Evolutionary Scale Model [13]. The representations are then concatenated to form the input vector.

Table 1: AUC-ROC scores of 3 baseline models (trained on Guo’s and Pan’s datasets), and 3
equivalent models trained on PiNUI datasets, tested on their 6 respective test sets, and 6 additional
test sets from various sources. The value reported is the mean AUC-ROC of all the models trained in
a 5-fold cross-validation, and the standard deviation in parenthesis.

Baseline PiNUI
Guo (Yeast) Pan (Human) Guo+Pan PiNUI:yeast PiNUI:human PiNUI:yeast+human

Guo (Yeast) 0.668 (0.03) 0.563 (0.01) 0.562 (0.03) 0.568 (0.02) 0.615 (0.01) 0.570 (0.01)
Pan (Human) 0.504 (0.04) 0.930 (0.00) 0.920 (0.01) 0.530 (0.03) 0.710 (0.01) 0.689 (0.02)

Guo+Pan 0.547 (0.04) 0.611 (0.01) 0.632 (0.01) 0.629 (0.01) 0.478 (0.00) 0.595 (0.01)
PiNUI:yeast 0.580 (0.02) 0.557 (0.00) 0.543 (0.03) 0.801 (0.00) 0.622 (0.00) 0.753 (0.00)

PiNUI:human 0.546 (0.00) 0.535 (0.01) 0.536 (0.00) 0.523 (0.01) 0.757 (0.00) 0.751 (0.00)
PiNUI:yeast+human 0.550 (0.00) 0.534 (0.00) 0.533 (0.00) 0.559 (0.01) 0.718 (0.00) 0.751 (0.00)

Human receptors 0.521 (0.02) 0.534 (0.01) 0.557 (0.03) 0.655 (0.04) 0.732 (0.05) 0.721 (0.03)
Human–non-human1 0.500 (0.00) 0.503 (0.01) 0.495 (0.00) 0.533 (0.01) 0.617 (0.01) 0.619 (0.00)
Human–non-human2 0.671 (0.05) 0.508 (0.01) 0.509 (0.01) 0.540 (0.02) 0.829 (0.02) 0.838 (0.01)
Human-SARS-CoV2 0.500 (0.03) 0.439 (0.01) 0.433 (0.02) 0.667 (0.03) 0.592 (0.01) 0.609 (0.01)

Human–Yeast 0.561 (0.05) 0.382 (0.02) 0.380 (0.03) 0.746 (0.03) 0.518 (0.02) 0.499 (0.01)
Human–mouse 0.820 (0.04) 0.535 (0.02) 0.608 (0.10) 0.612 (0.11) 0.854 (0.01) 0.844 (0.03)

In Table 1, a conspicuous trend emerges as models trained on the PiNUI variants outperform their
counterparts trained on PEER’s datasets by a significant margin. Notably, the Guo-trained model
exhibits commendable performance (.67AUC) on the Guo test set, while the Pan-trained model excels
(.93AUC) on the Pan test set. However, these specialized strengths come at the cost of diminished
performance on other test sets. In contrast, the PiNUI-trained models, although displaying lower test
performance on their respective test sets (.80, .76, .75AUC) compared to the baseline, offer a more
representative indication of their overall performance across diverse test sets.

This highlights the importance of the training set’s quality, with a specific emphasis on the method-
ology employed to generate unobserved negative protein-protein interactions for training purposes.
Conversely for experimental biologists looking to leverage ML-models, the study highlights the
importance of mitigating unintended bias when designing studies aimed at collection of large datasets
for predictive ML-models.
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5 Conclusion

In conclusion, our analysis demonstrates that models trained on the PiNUI dataset almost in every
instance, outperform their counterparts trained on PEER’s datasets when evaluated across a diverse
range of test sets. This suggests that the different design approach used to build PiNUI does encourage
models to generalize better across various testing scenarios.

The PiNUI dataset is intentionally designed to incorporate a nearly uniform imbalance in its label
distribution, challenging models to learn meaningful protein associations primarily from the co-
occurrence of input proteins within a pair. This design choice fosters a robust learning process,
enabling models to focus on, we hope, genuine protein interactions rather than relying on the mere
occurrence of individual proteins.
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