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Abstract

Harnessing textual information offers significant advantages in the drug design
process, providing invaluable insights into complex molecular structures and facili-
tating molecule design based on textual instructions. With recent advancements in
the utilization of Large Language Models (LLMs) for multi-modal data applica-
tions, we aim to leverage the capabilities of LLM for molecule property prediction
tasks. We introduce MoleculeGPT, which is designed to provide answers to queries
concerning molecular properties on the basis of molecular structure inputs. To
train the MoleculeGPT, we have curated a new dataset from the raw molecule
description in PubChem for instruction-following tasks. We evaluate the perfor-
mance of MoleculeGPT on multiple-choice questions and several downstream
tasks on molecule property prediction for drug design. Experimental results show
that MoleculeGPT can generate responses that closely resemble human-level per-
formance and demonstrate exceptional capabilities across diverse downstream
tasks.

1 Introduction

Recent advances in Artificial Intelligence (AI) have significantly pushed the frontier of molecule
design and drug discovery. Machine learning models, particularly deep neural networks, have found
wide-ranging applications in various aspects of this field, including molecule property prediction
(Thölke and Fabritiis, 2022; Schütt et al., 2017; Gasteiger et al., 2020), molecule generation (Karras
et al., 2022), drug screening (Kumar and Zhang, 2018; Altalib and Salim, 2022), protein docking
(Ketata et al., 2023) and structure-based drug design (Guan et al., 2023).

Most existing models primarily focus on the quantitative properties of the molecule. They utilize
quantitative atom features, such as atom mass, formal charge to predict the properties of molecule,
such as heat capacity, polarizability, or binding affinity. These closed-set predictions, can hardly
adapt to new molecular properties when facing with new drug design task. However, considering the
extensive history of development in chemistry and biology, harnessing textual information, such as
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Figure 1: A language model generating instruction-following response given the molecule structure
presented by C1=CC=C(C=C1)C=O.

annotations extracted from previous research articles, can greatly benefit the drug design process by
providing valuable insights for creating novel molecules from the collective knowledge documented
in prior literature. Harnessing textual information can also unlock the model’s capabilities of open-set
predictions that easily generalize to new tasks. To utilize this textual information, recent works mainly
focus on enforcing alignment between the molecule structure and textual annotations. For example,
both KV-PLM (Zeng et al., 2022) and MoleculeSTM (Liu et al., 2022) use contrastive learning to
estimate the similarity score between the SMILES string and its paired textual annotations. However,
for general molecule property prediction tasks, it is sometimes hard to generate a bunch of different
annotations for these methods to compare the similarity. A more natural approach of leveraging the
textual information is to generate corresponding responses given different molecule structures and
instructions. An illustrative example is shown in Figure 1.

Recent advances in Large Language Models (LLMs), such as ChatGPT, GPT-4 (OpenAI, 2023),
LLama (Touvron et al., 2023) and Vicuna (Chiang et al., 2023) make it possible to deliver the
aforementioned output. In particular, MiniGPT-4 Zhu et al. (2023) and InstructBilp Dai et al. (2023)
leverage multi-modal data and provide vivid image captions or responses to specific questions related
to the image contents. Recent work (Liu et al., 2023b) leverages the capacity of LLMs to deliver
molecule property analysis and text-guided molecule generation for specific drug design tasks, such
as controlling toxicity. However, it would be more desirable to develop a more general instruction-
following multi-modal language model, which can be readily fine-tuned for various downstream
tasks.

Our Approach In this paper, we propose MoleculeGPT, which provides an instruction-following
response given the molecule structures. Specially, MoleculeGPT contains two branches, the 2D
Graph Branch and 1D SMILES Branch, to digest both 2D molecular structure and 1D SMILES
representation. The multi-modal representations are then processed by two Q-Formers respectively to
fuse together as a soft prompt for LLM. To train the MoleculeGPT, we curate a new dataset that uses
LLMs (vicuna-13b in our experiment) to process the raw annotations from PubChem (Kim et al., 2021)
and obtain an effective instruction-following corpus. The generation quality can be improved using
these generated corpora instead of using the original raw data annotations. To evaluate the generation
quality, we propose multiple-choice question tasks similar to the CHEMIChoice (Zeng et al., 2022)
for zero-shot comparison. Furthermore, we also showcase MoleculeGPT’s good performance in
downstream tasks related to molecule property prediction.

Concurrent to our work, ChatDrug Liang et al. (2023) also leverages the LLMs for understanding
the molecule properties. They only use 2D graph representation and do not use the 1D SMILES
string for the molecule representation. In contrast, we leverage the molecule structures from both 1D
SMILES string and 2D graph. Using SMILES information, as discussed in (Zeng et al., 2022; Liu
et al., 2022) can usually provide better performance than only using the graph structure. Additionally,
we present a variety of numerical evaluations alongside the generative examples, offering a more
comprehensive assessment of the model’s performance.
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2 Related Work

2.1 Multi-Modal Large Language Models

In this section, we review multi-modal LLM. Generally speaking, the multi-modal representation in
LLMs can exist in both the input and the output of the model. In the first category, the multi-modal
objects (e.g., images and texts) are fed into the LLMs, and the LLMs are trained to give responses
given the multi-modal information. There are a series of works along this line. To mention a few,
LLaVA (Liu et al., 2023a) uses formatted language to express the image information, MiniGPT4 (Zhu
et al., 2023) and Instruct-BLIP (Dai et al., 2023) translate the image representation into the language
domain using a Q-Former (Li et al., 2023) and then use the output as soft prompts for LLMs. In the
second category, the multi-modal objects (e.g., images and texts) are generated by language models,
usually by diffusion models. In particular, GILL (Koh et al., 2023) append the Stable Diffusion model
to the end of LLMs to generate the desired images.

2.2 Using Text Information for Drug Discovery

The traditional method of text mining for drug discovery tasks is based on knowledge graph con-
struction and retrieval (Roberts PM, 2008; Krallinger M, 2005). With the advancement of NLP,
BERT(Devlin et al., 2019) and its variations are also used in drug discovery tasks. SMILES-BERT
(Wang et al., 2019) uses SMILE strings as the input of BERT. Beltagy et al. (2019) is one of the
most frequently used pre-trained language models in the biomedical domain, which is only trained
on natural language data. KV-PLM, as introduced by Zeng et al. (2022), employs contrastive learning
approach to estimate the similarity score between the SMILES representation of a molecular structure
and the corresponding textual annotations describing that structure. MoleculeGPT (Liu et al., 2022)
employs contrastive learning approach between the text annotations and the structure represented by
both SMILES string and graph structure.

Following the rapid growth of larguage language models, several very recent works use LLMs for
drug discovery. ChatDrug (Liu et al., 2023b) treats molecules’ textual strings using their SMILES
representation and enables researchers to modify the molecules or proteins to meet specific target
properties. DrugChat (Liang et al., 2023) fuses the graph information into LLMs as soft prompt.

3 Methodology

In this section, we introduce MoleculeGPT as well as the pre-training dataset to train our
MoleculeGPT.

3.1 MoleculeGPT Architecture

The architectural overview of MoleculeGPT is presented in Figure 2. MoleculeGPT consists of three
components: graph branch, SMILES branch and language model. In a high-level view, the first
two branches, which we will introduce later, will extract the structural information of the molecule
and feed into the language model as soft prompts. We use vicuna-7B-v1.5 as the language model
which is fine-tuned based on Llama2 (Touvron et al., 2023). As in previous work like MiniGPT4 or
InstructBlip, we freeze the LLM during the training, keeping it to generate a normal response if no
structural information is given.

3.1.1 2D Graph Branch

The graph branch is designed to utilize the 2D representations of the molecule. In particular, the
molecule graph is represented by a graph {vi}N , {eij}N×N where N is the number of atoms in the
molecule, xi is the embedding of the atom type, and eij is the embedding of the bond type. We
use GraphMVP (Liu et al., 2021) to aggregate the graph features to {yi}N . Since GraphMVP is
pre-trained by aligning the 2D molecule structures with the 3D molecule conformers, we explicitly
utilize the 2D information as well as the 3D conformer information.

Given the output of the GraphMVP, we hypothesize that the structural information is fully embedded
in the output features {yi}N thus we directly flatten it to a sequence Y ∈ RN×d and ignore the graph
structure. Then the sequence Y is fed into a Q-Former (Li et al., 2023) for translating to language
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Figure 2: Overview of the network architecture, the green block indicates the network components,
the blue block indicates the input or intermediate tensors.

modality. Unlike MiniGPT4, we need to train the Q-Former from scratch since the input is from the
domain of molecule representations instead of vision representations.

3.1.2 1D SMILES Branch

The SMILES branch is designed to utilize the 1D SMILES string of the molecule. To do so, we adapt
the ChemBerta-2 (Ahmad et al., 2022) pre-trained on multi-task regression using 77M compounds
from PubChem. We also take the sequential output from ChemBerta and then fed it to Q-Former.
The procedure is similar to the aforementioned graph branch. However, since the domain of SMILES
representation and the graph representation are different, we use a different Q-Former instead of the
one used after GraphMVP.

3.1.3 Merging into LLMs

The output sequences from two Q-Formers in graph branch and SMILES branch are then concatenated
together serving as the soft prompt of the large language models. Compared with Liang et al.
(2023), MoleculeGPT utilizes SMILES representation of the molecule, which usually provides better
information. In addition, MoleculeGPT treats the graph output as a sequence and then processes with
Q-Former, instead of taking the graph output as a single vector and using a linear layer to get the soft
prompt. Therefore, it can provide a more comprehensive representation of the graph structure.

3.2 Pretraining Dataset

We collect the annotations and descriptions from PubChem (Kim et al., 2021) database. PubChem
database contains about 112M molecules. Following Liu et al. (2022), we collect the annotations for
more than 300k molecules with annotations. A sample of the collected annotations is

Benzaldehyde is an arenecarbaldehyde that consists of benzene bearing a single formyl
substituent; the simplest aromatic aldehyde and parent of the class of benzaldehydes. It has a
role as a flavouring agent, a fragrance, an odorant receptor agonist, a plant metabolite, an EC
3.5.5.1 (nitrilase) inhibitor and an EC 3.1.1.3 (triacylglycerol lipase) inhibitor. Benzaldehyde
is a natural product found in Nepeta nepetella, Xylopia aromatica, and other organisms with
data available.

Several issues exist from the raw annotation collected from PubChem database that prevent it from
being efficiently used to train MoleculeGPT. Therefore, we apply multiple methods to clean and
refine the data. First, as suggested by Liu et al. (2022), we replace all the molecule name with
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token ‘∼’ to prevent the network learning the complex molecule names. Second, it is hard for the
language model to predict the origin, source, and literature related to the molecule given the molecule
structure (e.g., Benzaldehyde is a natural product found in Nepeta nepetella, Xylopia aromatica, and
other organisms with data available.). Thus, we split the annotations into sentences and remove the
sentences containing geographic information, citations and other hard-to-predict part.

In addition to the aforementioned issue also mentioned in Liu et al. (2022), when using the above
corpus to train the language model, a unified instruction ‘Give me a description of the molecule’
would be very rough. To generate diverse responses given different instructions about the structure,
usage, and toxicity of the molecule, we adapt another large language model to propose questions
given the annotations. In particular, we use the vicuna-13B-v1.3 to generate the questions, where
the input prompt is

Propose a question regarding the molecule ‘∼’ whose answer is: ∼ is an alpha-CH2-
containing aldehyde:

More than 130k pairs of instruction-following on 80k molecules are generated via this procedure.
Some samples of the generated instruction-following pairs are presented below; we defer more
examples to Appendix A.

Instruction: What type of molecule is ∼?
Response: ∼ is an alpha-CH2-containing aldehyde.

The molecule structure is then preprocessed to get SMILES string and 2D graph networks for feeding
into the neural networks.

3.3 Training Objective of MoleculeGPT

We train MoleculeGPT using the cross-entropy loss with the desired response, following the standard
practice for fine-tuning language models. To construct the input context, we concatenated the
embeddings of the input instructions and the molecule, denoted by H. Given the output response xiL

as the training data, we trained MoleculeGPT by minimizing the objective function:

L(θ) =
∑L

i=1 log Prθ(xi|H, x1:i).

Here, Prθ is parameterized by the autoregressive model in vicuna-7b-v1.5. As suggested in Liu
et al. (2022), the molecule dataset (130k in our setting) is usually much smaller than the vision data
set (129M in Li et al. (2023)). Therefore, we leverage the pretrained network. In particular, we
freeze ChemBerta-2 for SMILES feature extraction but finetune the GraphMVP, which is common
in practice (Liu et al., 2022, 2021; Wang et al., 2022). Two Q-Formers on the graph branch and
SMILES branch are trained from scratch since they are serving different domains.

4 Experiments

We present the generation results and several numerical experiments in this section. We use the
dataset described in Section 3.2 to pretrain the model. In particular, the training dataset is constructed
by 80% molecules in the original dataset and the testing dataset contains the rest 20% molecules. We
train MoleculeGPT on 8 V100 GPUs for 100 epochs with batch size 64 on the training dataset.

Samples of instruction-following responses in the test dataset are presented below. It’s obvious that
MoleculeGPT can well capture the structural information and get accurate answers on questions
related to molecule structure, even if MoleculeGPT has never seen the structure before. Regarding
the queries about the physical property, such as the color and odor, the response is less accurate. This
aligns with the intuition that physical properties are usually harder to predict given the molecule
structure. We defer more examples to Appendix B

Instruction: What is the chemical structure of the molecule represented by ∼?
Ground Truth: ∼ is an amino alcohol and a secondary alcohol
Response: ∼ is a secondary amino compound and a primary amino compound
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Instruction: What is the physical appearance and odor of the molecule ?
Ground Truth: appears as a colorless liquid with a slight ammonia-like odor
Response: appears as a clear colorless to yellow liquid with a fishy odor

4.1 Multiple-Choice Questions

To provide a numerical evaluation for the generation performance, we conduct the multiple-choice
questions. Specifically, for each instance in the test dataset, which consists of a description paired with
its corresponding molecular structure, we create an M -choice question. In this setup, MoleculeGPT
is tasked with selecting the most precise description from the available options. To construct these
options, we randomly sample M − 1 descriptions from the test dataset. An example of the prompt
and the output from MoleculeGPT is:

Human: In the following four choices, which one better describes the molecule ∼?
A. ∼ is an aldimine and a triol.
B. ∼ is a selective and almost irreversible inhibitor of thrombin, both free and clot-bound, by
blocking its active site.
C. ∼ is an acyl monophosphate and a 2,3-bisphosphoglyceric acid.
D. ∼ is a gonadotropin releasing hormone agonist that is used to treat central precocious
puberty in children and endometriosis in women
AI: ∼ is an aldimine and a triol

We evaluate the accuracy through comparing the normalized log-likelihood of all M choices: suppose
the prompt containing the options and molecule structure is HMCQ and the m-th choice is tokenized
into sequence {xm,i}Lm

, where Lm demotes the length of the tokens. Then the (normalized) loss for
m-th choice is defined by

Lm =
∑Lm

i=1 logP(xi|HMCQ, x0:i)/Lm. (4.1)

This normalization is commonly used in evaluating LLMs in general questions (Robinson and
Wingate, 2023) to encourage choosing the longer options. MoleculeGPT is considered making a
correct choice when the loss on the correct option is lowest among M choices.

The accuracy is presented in Table 1, where we also include the CHEMIChoice task result from
Zeng et al. (2022). Our evaluation task presents greater complexity compared to CHEMIChoice, and
this heightened difficulty can be attributed to two distinct factors. Firstly, due to the limitation of
context vicuna-7b-v1.5 can handle, we divide lengthy descriptions into multiple shorter segments,
resulting in options that are inherently less informative compared to those in the CHEMIChoice task.
Secondly, whereas CHEMIChoice allows for the selection of incorrect answers from molecules that
differ significantly from the correct choice, we do not incorporate this aspect into our evaluation,
thereby increasing the challenge of our task.

Method Tasks M Accuracy (%, ↑)

Random Guess - 4 25%
KV-PLM (Zeng et al., 2022) CHEMIChoice 4 83.1

Sci-BERT (Beltagy et al., 2019) CHEMIChoice 4 81.6
BERT (Devlin et al., 2019) CHEMIChoice 4 32.3

Human Response (Zeng et al., 2022) CHEMIChoice 4 76.5
MoleculeGPT Ours 2 78.3
MoleculeGPT Ours 3 70.8
MoleculeGPT Ours 4 61.4

Table 1: The accuracy on different choices of M and tasks, the numbers for CHEMIChoice dataset is
copied from Zeng et al. (2022)

.

Several observations can be made from the results. First, MoleculeGPT significantly does better than
random baseline. This suggests that MoleculeGPT can indeed leverage the molecule structure to
infer the best description of the molecule. Second, there is a gap between the MoleculeGPT and
Human Response and KV-PLM. We hypothesize this gap is because a more challenging task due

6



to the limitation of the context length limitation. We expect the performance would be significantly
better if we employ larger models, like vicuna-30b-v1.5.

4.2 Downstream Tasks on MoleculeNet Benchmarks

We present the results of downstream tasks on MoleculeNet (Ramsundar et al., 2019) to showcase
MoleculeGPT’s capabilities in assisting with specific tasks related to drug design. MoleculeNet
contains several benchmarks designed for testing machine learning methods of molecular properties.
We test the classification tasks including Tox21, BBBP, HIV and SIDER. To mitigate LLMs to answer
the (binary) classification tasks, the input prompt is designed as

BBBP dataset: Can molecule ∼ bypass the Blood-Brain Barrier?

Following the method in Section 4.1, we compare the loss for the positive response and negative
response. We present the prompts for the BBBP task as follows and defer the prompts for the rest of
the data set to Appendix C.

Positive: The molecule ∼ can bypass the Blood-Brain Barrier
Negative: The molecule ∼ can not bypass the Blood-Brain Barrier

We finetune MoleculeGPT for 10 epochs on 80% of the dataset. As Liu et al. (2022); Zeng et al.
(2022), we report the AuROC for these tasks in Table 2. It is evident that MoleculeGPT’s performance
consistently outperforms other baseline methods. There are two reasons leading to this results. First,
MoleculeGPT uses both SMILES string and Graph representation of the molecule, providing a
multi-modal molecule features. Second, MoleculeGPT utilizes ChemBerta-2 and GraphMVP as
pretrained components, which have already been trained on these tasks. The structure and pretraining
of MoleculeGPT can fully leverage this information thus providing a better result.

Figure 3: Comparison of training MoleculeGPT from scratch
(blue, by keeping the ChemBerta-2 and GraphMVP frozen)
and from pretraining methods (orange)

To investigate the second hypoth-
esis, which posits that pretraining
MoleculeGPT can enhance the uti-
lization of multi-modal information
from its pretrained components, we
conducted an ablation study. Specif-
ically, we trained the Q-Formers
from scratch for 10 epochs using the
same training dataset while keeping
ChemBerta-2 and GraphMVP frozen.
As depicted in Figure 2, the F1 scores
for all 12 tasks in the Tox21 dataset
exhibited a significant decrease (on
average, from more than 80% to less
than 20%. This result suggests that
training MoleculeGPT solely on these
specific tasks, without prior pretrain-
ing, leads to severe overfitting instead
of utilizing the molecule structure for
effective prediction.

5 Discussion and Limitations

In this paper, we propose MoleculeGPT to generate instruction-following texts about the property of
the molecule, given the structure of the molecule. We curate a new data set that takes advantage of the
power of LLMs to improve data quality. Several experiments show that the trained model achieves
near-human performance on multiple-choice questions and has superior performance on downstream
tasks. Future work includes understanding why graph representations can potentially help improve
the response quality and fine-tuning/testing our models on more challenging tasks, including the
downstream tasks.
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Model
AuROC %, ↑ Tox21 BBBP HIV SIDER

KV-PLM (Zeng et al., 2022) 72.12 70.50 65.40 59.83
GraphMVP (Liu et al., 2021) 77.06 68.11 77.74 60.64

MoleculeSTM + SMLIES (Liu et al., 2022) 75.71 70.75 77.02 63.70
MoleculeSTM + Graph (Liu et al., 2022) 76.91 69.98 73.40 60.96

MoleculeGPT 83.05 86.51 81.07 75.57
Table 2: AuROC for MoleculeNet benchmark tasks. The numbers of benchmark algorithms are
from Liu et al. (2022).

There are indeed some limitations in our model. First, the current model only utilizes the molecule
structure, however, as discussed in Section 2.1, it would be more beneficial and challenging to
generate the desired molecule structure given the text input, or even editing the molecule structure
to incorporate the desired properties. Second, the current response generated by the model is
straightforward, as the example shows. It would be more interesting and helpful for drug-design
researchers if the model could output the reasoning for the output. We believe that this could be
achieved using the chain-of-thought (Wei et al., 2023) idea and our work can lead to many follow-up
works reaching this goal.
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A Example of Generated Instruction-Following Data Pairs

Below are randomly picked generated instruction-following data pairs using vicuna-13b-v1.3.

Instruction: What is the chemical classification of the molecule represented by ∼?
Response: ∼ is an organosilicon compound.

Instruction: What are the properties of the molecule ∼?
Response: ∼ appears as a colorless volatile liquid with an agreeable odor

Instruction: What is the role of the molecule ∼ in various biological processes?
Response: ∼ has a role as a metabolite, an antineoplastic agent, an antitubercular agent and
an antimalarial

Instruction: What are the properties exhibited by the molecule ∼?
Response: ∼ exhibits cytotoxic, antimalarial, and antitubercular activities.

Instruction: What type of molecule is ∼?
Response: ∼ is an aminoglycoside

Instruction: What is ∼ functional related to?
Response: ∼ is functionally related to a propionic acid and a loxoprofen

Instruction: What is the structure of the molecule represented by the symbol ∼?
Response: ∼ is a monocarboxylic acid that is propionic acid in which one of the hydrogens
at position 2 is substituted by a 4-[(2-hydroxycyclopentyl)methyl]phenyl group (the
2S,1’R,2’S-stereoisomer)

B Example of Generated Response from MoleculeGPT

Below are randomly picked generated response given the instructions and the molecule structures

Molecule SMILES: CCCCC(=O)N
Instruction: What is ∼ functional related to?
Ground Truth: ∼ is functionally related to a valeric acid
Response: ∼ is functionally related to a valeric acid

Molecule SMILES: CC(C)C(=O)C(=O)O
Instruction: What is the molecular structure of the compound represented by the symbol ∼?
Ground Truth: ∼ is a 2-oxo monocarboxylic acid and a branched-chain keto acid
Response: ∼ is a 2-oxo monocarboxylic acid that is pentanoic acid [C5H9NO2-2] substituted
with a methyl group at position 2

Molecule SMILES: CC(C)C(=O)C(=O)O
Instruction: What is the metabolic role of the molecule ∼ in living organisms?
Ground Truth: ∼ is a metabolite of isoleucine in man, animals and bacteria
Response: ∼ has a role as a metabolic intermediate in living organisms

Molecule SMILES: CC(C)C(=O)C(=O)O
Instruction: What is the primary role of the molecule ∼ in clinical medicine?
Ground Truth: ∼ is used as a clinical marker for maple syrup urine disease
Response: ∼ is a component of clinical medicine that is a fatty acid

Molecule SMILES: CC(C)C(=O)C(=O)O
Instruction: What is the chemical structure of the molecule represented by ∼?
Ground Truth: ∼ is the alpha-keto acid analogue of isoleucine
Response: ∼ is a deoxyribose that is valine 2 a 2-oxo compound

Molecule SMILES: CC(C)C(=O)C(=O)O
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Instruction: What is the chemical formula and structure of the molecule represented by ∼?
Ground Truth: ∼ is a 2-oxo monocarboxylic acid that is valeric acid carrying oxo- and
methyl substituents at C-2 and C-3, respectively
Response: ∼ is a 2-oxo monocarboxylic acid that is pentanoic acid [ 1177-12-2H] with a keto
substituent at C-2

Molecule SMILES: C1=CC(=C(C=C1Cl)O)Cl
Instruction: What is the chemical structure of the molecule represented by ∼?
Ground Truth: ∼ is a dichlorophenol with the chloro substituents at positions 2 and 5
Response: ∼ is a dichlorophenol that is phenol in which the hydrogens at positions 3 and 4
are replaced by chlorines

Molecule SMILES: C1=CC=C2C(=C1)C=CC(=O)N2
Instruction: What is the role of the molecule ∼ in bacterial metabolism?
Ground Truth: ∼ has a role as a bacterial xenobiotic metabolite
Response: ∼ has a role as a bacterial xenobiotic metabolite

C Prompts used for MoleculeNet datasets

Below are the prompts to finetune Tox21, HIV and Sider dataset

Tox21 dataset. There are 12 separate tasks whose prompt are

1. Does ∼ interact with the Androgen Receptor (NR-AR)?

2. Does ∼ interact with the Androgen Receptor Ligand Binding Domain (NR-AR-LBD)?

3. Does ∼ interact with the Aryl Hydrocabon Receptor (NR-AhR)?

4. Does ∼ interact with the Aromatase (NR-Aromatase)?

5. Does ∼ interact with the Estrogen Receptor (NR-ER)?

6. Does ∼ interact with the Estrogen Receptor Ligand Binding Domain (NR-ER-LBD)?

7. Does ∼ interact with the Peroxisome Proliferator-Activated Receptor Gamma (NR-PPAR-
gamma)?

8. Does ∼ interact with the Antioxidant Response Element (SR-ARE)?

9. Does ∼ interact with the ATAD5 (SR-ATAD5)?

10. Does ∼ interact with the Heat Shock Response Element (SR-HSE)?

11. Does ∼ interact with the Matrix Metalloproteinase (SR-MMP)?

12. Does ∼ interact with the Tumor Protein p53 (SR-p53)?

HIV dataset. The prompt for HIV dataset is

Is molecule ∼ active against HIV-1 protease?

Sider dataset. The universal prompt for all 27 tasks in Sider dataset is

Does ∼ cause any adverse effect?
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