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Abstract

Accurate, reliable and scalable predictions of protein-ligand binding affinity have a
great potential to accelerate drug discovery. Despite considerable efforts, three chal-
lenges remain: out-of-distribution (OOD) generalizations for understudied proteins
or compounds from unlabeled protein families or chemical scaffolds, uncertainty
quantification of individual predictions, and scalability to billions of compounds.
We propose a sequence-based deep learning framework, TrustAffinity, to address
aforementioned challenges. TrustAffinity synthesizes a structure-informed protein
language model, efficient uncertainty quantification based on residue-estimation
and novel uncertainty regularized optimization. We extensively validate TrustAffin-
ity in multiple OOD settings. TrustAffinity significantly outperforms state-of-the-
art computational methods by a large margin. It achieves a Pearson’s correlation
between predicted and actual binding affinities above 0.9 with a high confidence and
at least three orders of magnitude of faster than protein-ligand docking, highlighting
its potential in real-world drug discovery. We further demonstrate TrustAffinity’s
practicality through an Opioid Use Disorder lead discovery case study.

1 Introduction

Drug discovery is very complex process, taking up to 15 years and costing billions of dollars [1]. The
advent of increased available protein structure and chemical genomics data and ever-improving deep
learning algorithms has inspired the application of computational science and Artificial Intelligence
(AI) to drug discovery [2, 3, 4], speculating their potential to accelerate discovering new therapeutics
for unmet medical needs [5]. Screening a library of billions of compounds against a drug target to
identify lead compounds and subsequently optimizing their binding affinities via medicinal chemistry
for drug candidates are critical steps in a predominant target-based drug discovery process. In the
paradigm of target-based drug discovery, an ideal drug should have a high binding affinity towards a
specific target protein to ensure lower concentration usage, but not bind to other proteins to reduce
side effects from off-targets. Thus, accurate, reliable, and scalable prediction of protein-ligand
binding affinities across the human proteome is a central task of computer-aided drug discovery.

Despite considerable efforts, the performance of existing protein-ligand binding affinity prediction
methods remains poor in terms of accuracy, scalability, and reliability. The generalization power
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of deep learning methods for protein-ligand interaction predictions is weak. Current works mainly
focus on well-studied drugs and their analogs and pharmaceutically characterized targets[6, 7]. Few
machine learning methods can reliably predict protein-ligand interactions between understudied
proteins whose functions are not well characterized and chemicals with novel scaffold. Unfortunately,
the pharmaceutical characterization of the human proteome is highly biased [8, 9, 10, 11]. More than
95% of human proteins do not have known small molecule ligands [12, 13, 14, 15]. Additionally, the
chemical space of small organic molecules is astronomically vast. Although the number of possible
small organic molecules is approximate 1060 [16], only around 106 compounds have annotated
protein targets [17, 18, 19]. The scarcity of ligand information for the majority of proteins and
limited coverage of chemical genomics space make it challenging to train generalizable deep learning
models for binding affinity predictions in an OOD scenario for understudied proteins and unexplored
chemical space[20, 21], in which unseen testing data (proteins or chemicals) are significantly different
from training data.

Biophysics-based protein-ligand docking (PLD) may endure the OOD problem when the reliable
3-dimensional (3D) structure of drug target is available [22]. However, PLD suffers from a high rate
of false positives due to poor modeling of protein dynamics, solvation effects, crystallized water,
and other challenges [23]. The reliability of PLD significantly deteriorates when using predicted
protein structures [24, 25, 26]. Despite the success of AlphaFold2 [27], it can only reliably model
approximately half of understudied human proteins whose small molecule ligands are unknown [28].
Moreover, PLD is computationally intensive, taking several seconds to score a protein-chemical pair.

Since drug discovery is a high stake process, making decisions based on incorrect predictions can lead
to time and resource wastage. Knowing the confidence level of a prediction is crucial, as it allows
researchers to make informed decisions about whether to consider or disregard specific drug leads.
This necessitates an estimation of a reliability measure for individual predictions. The uncertainty of
prediction comes from either a data distribution shift or model bias and variance. The application of
uncertainty quantification to the field of biology is relatively limited. Gaussian Process (GP) is one
of popular approach to the uncertainty quantification. Several works [29][30] propose a combined
GP and multi-layer perceptron (MLP) approach for various biological tasks. However, the proposed
GP+MLP algorithm is computationally intensive and requires the modification of the architecture of
predictive models. Zeng and Gilford [31] implement an ensemble of NNs to obtain the uncertainty
associated with the predictions for peptide-MHC binding. However, the ensemble-based technique is
not as accurate as the GP algorithm for quantifying uncertainty.

To overcome the aforementioned limitations, we propose a new deep learning framework, TrustAffin-
ity, which uses a pre-trained structure-informed protein language model [32] for exploring new
chemical genomics space, incorporates an uncertainty quantification module inspired by Residual
Estimation with an I/O Kernel (RIO) [30], and proposes a new NLPD-based uncertainty score. Under
a rigorous benchmark study, our proposed method significantly outperforms state-of-the-art deep
learning models for binding affinity prediction in the OOD scenario by a large margin. Interestingly,
TrustAffinity also demonstrates superiority over protein-ligand docking in terms of both accuracy
and scalability. We further demonstrate the applicability of TrustAffinity to real-world drug discovery
in a case study on lead discovery for Opioid Use Disorder (OUD). Thus, TrustAffinity represents a
significant advance in deep learning applications to drug discovery.

In summary, our contributions include the following key points:

1. We introduce TrustAffinity, a novel trustworthy deep learning framework for accurate,
reliable and scalable binding affinity prediction in the OOD scenario.

2. Through rigorous benchmark studies, we demonstrate the superior performance of
TrustAffinity compared to other state-of-the-art methods.

3. We apply TrustAffinity to a drug design case, and showed that efficient sequence-based
TrustAffinity significantly outperforms structure-based protein-ligand docking.

2 Method

Our method, TrustAffinity, consists of two main modules, the binding affinity prediction module and
the uncertainty quantification module. They are used together to improve each other’s performance.
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Figure 1: Overview of TrustAffinity. TrustAffinity consists of two main modules, binding affinity
prediction module and uncertainty estimation module, which work in sync to provide the binding
affinity and the uncertainty associated with the prediction.

The following subsections provide motivations and details for each of these modules in TrustAffinity
framework. Figure 1 provides an overview of TrustAffinity.

2.1 Binding Affinity Module

The binding affinity module consists of three sub-modules - protein sequence module, ligand process-
ing module, and lastly protein-ligand interaction (PLI) module. All of these modules work together
to predict the binding affinity associated with the PLI.

2.1.1 Protein Sequence Module

Protein sequence representation is one of the most vital components in the machine learning frame-
works for predicting not only PLIs [21, 33, 34, 35], but also their 3D structure [27, 32]. Protein
sequences contain information that can be used to infer protein structure, function, and family [32],
making them a rich source of data for machine learning models [27, 32]. Large datasets of protein se-
quences are available [27, 36, 37], enabling machine learning frameworks to learn high-level, general
representations of proteins. We utilize ESMFold [32] to obtain the protein sequence embeddings,
which deploys a large language model (LLM) - ESM-2 alongside a folding module and a structure
module for modeling the protein structure. The ESM-2 protein language model, which is able to
capture the protein structures at the fine resolution of the atomic level, consists of variable parameters
ranging from 8M to 15B. We use the 650M parameter model to obtain the refined protein sequence
representation. We observed that the sequence representations obtained from the structure module of
the ESMFold model performed better than the protein embeddings obtained from the ESM-2 model
directly as well as the sequence embeddings obtained from the folding block, possibly because the
structure block refines the protein sequence obtained from the ESM-2 model. We remove protein
sequences greater than 700 in length as they are very low in numbers and due to constraints with
time and memory. Since the embeddings obtained are variable in size corresponding to the protein
sequence length, to make them consistent for the next steps, we perform padding to pad the sequences
with lengths less than 700, and define masks associated with the sequences that track the padding.
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Since CNNs are known to work well with processing local sequence representations, we use the
ResNet model [38] with 5 layers, and each layer has 4 convolutional layers to obtain a refined protein
sequence embedding. Finally, adaptive masking (using interpolation) is used based on the changes to
the embeddings to avoid the loss of information.

2.1.2 Ligand Module

We represent each ligand as a 2D graph, where the nodes symbolize atoms and the edges are bonds.
Embeddings for both node and edge are learnt using the graph isomorphism network (GIN) [39].
For atom or node attributes, we used atom types, hybridization types, atom degrees, atom chirality,
atom formal charges and atom aromatic all converted to one-hot encoding before being utilized by
GIN. We use a 5-layer GIN architecture, which aggregates and updates node embedding for each
atom/node. To obtain a graph-level or a ligand-level embedding that remains permutation invariant, a
final sum pooling operation is used.

2.1.3 PLI Module

After obtaining both the protein and ligand embeddings, we use the attentive pooling network such
that the model is aware of both protein and ligand and that the interaction isn’t solely dependent on
either of protein or ligand. This network gives us the attention weighted embeddings for both which
are then concatenated and fed to a MLP which predicts the final binding affinity.

2.2 Uncertainty Quantification Module

In our uncertainty quantification module, we integrate a refined RIO framework [30] to enhance
uncertainty quantification. Our refined GP uses the proposed I/O kernel from the RIO work. Since our
dataset is very large, the time complexity for using the exact GP would be O(n3), where n is the total
number of training samples. Therefore, we use the approximate GP, which considers a certain number
of inducing points learnable through the training process. We randomly take 50 points, reducing
the time complexity down to O(mn2), where m is the total number of inducing points. Unlike the
original RIO framework, our approach involves the adaptation of the simultaneous training of GP
and binding affinity prediction. So that we can actively utilize the uncertainty associated with the
predictions to make the model aware of its own uncertainties and thereby improve its performance.
Our uncertainty quantification module uses the output obtained from the attentive pooling layer
concatenated with the predicted residues as input to predict the residuals (the difference between
the predicted and the true binding affinity). By learning to model the residuals, which represent the
variance associated with the model’s predictions, the model aims to become aware of its variability
and uncertainty, thereby obtaining a more trustworthy model. We assess uncertainty through the
average Natural Logarithm Predictive Density (NLPD), which prefers conservative models while
penalizing overly confident and underconfident predictions [40]. A lower NLPD value is better, and
it evaluates both the prediction and its associated uncertainty. We implement a novel loss function
inspired by [41], that directly uses the average uncertainty in form of NLPD to combine with the
mean squared error (MSE) loss. Our NLPD-MSE combined loss function is defined as, where the
NLPDmean is the summation of the individual NLPDs:

loss =
1

2

(
e− log(NLPDµ) · (MSE + log(NLPDµ)

)
. (1)

NLPD is defined as follows for a point xi from a distribution with X values:

NLPD(xi, µ, σ) =
1

2
log(2πσ2) +

(xi − µ)2

2σ2
(2)

TrustAffinity utilizes two types of NLPD-based scores. NLPD (Ytrue) is calculated using Ytrue,
Ycorrected, and σ as the X , µ, and σ respectively in the Eq. 2. We calculate the corrected/adjusted
prediction (Ycorrected) values using the residue value obtained by the uncertainty quantification
module by adding the mean value (µ) of the residue obtained and the predicted neural network
prediction (Y nn) as shown in the Eq. 3. We define NLPD(Ytrue) as shown in the Eq. 4. It evaluates
how well the TrustAffinity’s corrected predictions align with the true values or the ground truth, and
provides an upper bound of TrustAffinity performance when evaluated by the NLPD.
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Figure 2: TrustAffinity’s training process.

For NLPD (Ypred), we compute it using Ycorrected, µ, and σ as the X , µ, and σ respectively in the
Eq. 2. NLPD (Ypred), as shown in Eq. 5, is a measure of how significant the corrected value is in
relation to the TrustAffinity’s Binding Affinity prediction model’s uncertainty for unseen data. It is
useful in practical scenarios for novel prediction uncertainty estimation.

Ycorrected = Ynn + µ (3)

NLPD(Ytrue) =
1

2
log(2πσ2) +

(Ytrue − Ycorrected)
2

2σ2
(4)

NLPD(Ypred) =
1

2
log(2πσ2) +

(Ycorrected − µ)2

2σ2
(5)

2.3 Training of TrustAffinity

We train our binding affinity module for 50 epochs with a batch size of 256. As shown in Figure
2, we train the uncertainty quantification module or the GP every 10 epochs to ensure it is in sync
with the latest binding affinity prediction module, leading to continual improvement in its ability to
estimate uncertainty. More details about the hyperparameters and configuration of the TrustAffinity
model are present in the appendix.

3 Experiments

3.1 Experimental Settings

Dataset: We train TrustAffinity on the ChEMBL31 database[17], which consists of 350,400 PLI
pairs. In the experiments, we split the dataset into training, testing, and validation set by 7:2:1.
Negative log transformation was performed on Ki (binding affinity) to obtain pKi values. The data
was split using two scaffold splitting [42] methods - 1) Random Scaffold Split - random selection
of scaffolds, 2) Standardized Scaffold Split - ordered selection of scaffolds, 3) Pfam Split - random
selection of Pfam protein families. Scaffold split ensures that there was no overlap of scaffold in the
training, testing and validation set. Pfam split ensures that there was no overlap of protein families in
the training, testing and validation set. This was done to validate the model’s generalization power in
multiple OOD settings. Moreover, considering the vast chemical space for drug discovery, it is very
likely that the model will encounter unknown and new scaffolds.

Baseline models: We compare our model’s high confidence, low uncertainty predictions with
the current state-of-the-art model, BACPI, which uses a novel bi-directional attention mechanism
for modeling interaction between the protein and ligand [33], on the OOD test set. BACPI [33]
outperforms other state-of-the-art models DeepAffinity [21], DeepPurpose [43], MONN [44]. Thus,
we do not directly compare TrustAffinity with these models. We also compared TrustAffinity with
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a typical PLD method, AutoDock Vina [45], on an external Dopamine Receptor antagonist data
set [12], which contains 65 new compounds screened for there sub-types of Dopamine Receptors
including DRD1, DRD2, and DRD3.

Evaluation: We evaluate our model performance using root mean square (RMSE), mean absolute
error (MAE), Pearson correlation coefficient (r) and Spearman’s rank correlation coefficient (ρ).

Figure 3: UMAP plot of chemical and protein embeddings of TrustAffinity. (a) UMAP plot for Pfam
split, (b) UMAP plot for chemical scaffold split.

4 Results and Discussions

Improved OOD binding affinity prediction: We evaluated the performance of TrustAffinity in
several OOD settings. They include standardized and random scaffold splits where chemicals in the
testing set have different chemical scaffolds from those in the training/validation set. The difference
between two types of splits is that the scaffold classes in testing data is selected following the order
sorted by the number of chemicals in each scaffold class in the standardized split, but randomly in
the random split. For the purpose of comparison, we also evaluate TrustAffinity in the in-distribution
setting of random split. In addition, we assess the generalization power of TrustAffinity in a Pfam
split benchmark where proteins in the testing data belong to different Pfam families from those in
the training and validation data, a challenging OOD setting. Fig. 3, depicts the Uniform Manifold
Approximation and Projection (UMAP) plot of protein and chemical embeddings for both the Pfam
split and the scaffold split, where training and testing data form distinctly different clusters for protein
embeddings and chemical embeddings, respectively. They clearly demonstrate OOD scenarios.

In the OOD setting, TrustAffinity consistently outperforms the current state-of-the-art BACPI model
regarding all four metrics in all settings, as shown in Figure 4. In both the standardized scaffold
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Figure 4: Performance comparison of TrustAffinity with BACPI on test set for various settings
including standard scaffold split, random scaffold split, Pfam OOD split, and random split.

split and the random scaffold split settings, our model could successfully utilize the uncertainty of
predictions for improving the model performance. Although BACPI has an acceptable performance
in the random split setting, its performance significantly drops in the scaffold split setting. In contrast,
the correlation between predicted binding affinities by TrustAffinity and actual binding affinities
remains high when testing chemicals have different scaffold from those in the training set. Moreover,
in case of Pfam based split, we see that BACPI generalizes even worse as compared to scaffold based
splits. But TrustAffinity is still able to obtain consistent performance similar to the other splits across
all the metrics. These findings clearly demonstrate the superior generalization power of TrustAffinity
when predicting the binding affinity in an OOD setting. The predictions by TrustAffinity not only
have higher correlation but also have significantly lower deviation as recorded by the RMSE (on
average 61.62% lower), and MAE (on average 56.15% lower) when compared to BACPI.

Table 1: OOD DRD set results (for AutoDock Vina, the predicted docking score was multiplied by a
constant which is best suited for obtaining the final pKi value aligned with the actual pKi values)

Method RMSE MAE r ρ

AutoDock Vina 1.179 1.031 0.308 0.334

BACPI 2.523 2.181 0.103 0.122

TrustAffinity (Ytrue) 0.384 0.312 0.856 0.820
TrustAffinity (Ypred) 0.846 0.65 0.612 0.667
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Figure 5: Comparative residual plot of TrustAffinity vs AutoDock Vina (PLD), and TrustAffinity
vs BACPI. (a) Uses Ytrue as part of uncertainty estimation, (b) Uses Ypred as part of uncertainty
estimation

Case study on lead discovery for OUD: Our method is able to achieve considerably higher Pearson
and Spearman correlation as compared to AutoDock Vina and BACPI when tested on an external
OOD DRD antagonist dataset, as shown in Table 1. Figure 5 provides more detailed performance
comparisons between TrustAffinity, AutoDock Vina as well as BACPI. In general, more PLI pairs
predicted from TrustAffinity have smaller residues (errors) than those from AutoDock Vina and
BACPI (lower corner in Figure 5),which is particularly true for the low uncertainty predictions. Our
method simply utilizes the protein sequence and chemical SMILES, while AutoDock Vina utilizes
the 3D structures to obtain a docking score. Moreover, we find that TrustAffinity is able to predict the
binding affinity as well as the uncertainty associated with it for a protein ligand pair in approximately
0.003 seconds, making it roughly three orders of magnitude of faster than AutoDock Vina, which
is known to take several seconds to minutes [46], even when considering the best case scenario
for AutoDock Vina. Thus TrustAffinity could be a potentially powerful tool for screening novel
compounds in the drug discovery pipeline due to its high accuracy, a reliable automated component
based on the uncertainty predictions, and scalability.

5 Conclusion

In this work, we propose TrustAffinity, a novel framework for accurate, reliable and scalable prediction
of binding affinity along with an estimation of the associated uncertainty. We have demonstrated
the robust OOD generalization capabilities of TrustAffinity, yielding reliable binding affinity with
high accuracy. Furthermore, we highlight the framework’s notable advantage in terms of rapid
inference speed, in contrast to PLD, thereby rendering it well-suited for deployment in automated
drug discovery processes. However, our method has certain limitations. Firstly, there is a significant
performance margin between the proposed NLPD score for the uncertainty quantification and its
theoretical upper-bound. New methods are needed to push the limit of the uncertainty quantification.
Secondly, it is unable to predict the binding pose of the PLI, which is also crucial for further drug
discovery pipeline. Finally, the performance of TrustAffinity can be further improved when it conducts
multi-task learning including the prediction of binding poses, binding affinity and binary classification
of PLI interactions. As part of future work, we would like to explore multi-task predictions and the
incorporation of semi-supervised techniques such as student-teacher model training for even better
OOD generalization.
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A Appendix

A.1 Related Works

A.1.1 Protein-ligand docking (PLD)

The prediction of binding affinity of a protein-ligand complex can be categorized into two major approaches:
structure-based methods and structure-free methods. Structure-based methods rely on three-dimensional (3D)
information about the protein-ligand complex to predict their binding affinity and often the underlying mechanism
associated with their interactions. PLD is the basis of structure-based methods and provides substantial
biological interpretability, as the results provide insights into spatial configurations of protein-ligand complex
and information about the various binding sites present on the protein. However, PLD is computationally
expensive and relies heavily on the availability of 3D structural data [47]. Furthermore, PLD is highly sensitive
to the conformational state of structures, which can often lead to inaccurate predictions [23].

A.1.2 Machine learning methods for binding affinity predictions

In the past decade, an increasing number of machine learning and deep learning algorithms have been incor-
porated into the prediction of PLIs and their binding affinity from 3D information [48, 49, 50, 51]. These
structure-based machine learning methods use a variety of methods to incorporate 3D information into their
models for predicting binding affinity. KDEEP [48] and DeepAtom [49] represent both the protein and the ligand
as 3D voxels and use deep convolutional neural networks (DCNNs) to account for molecular interactions within
the protein-ligand complex. AtomNet [50] also uses a form of voxel representation. Instead of representing the
entire protein, it represents only the binding site of the target protein. PotentialNet [51] utilizes the power of
graph neural networks (GNNs) to learn powerful representations for both proteins and ligands for predicting
binding affinity. While these methods have demonstrated their effectiveness in the prediction of binding affinity,
they rely on extensive 3D data and are computationally expensive.

Recent studies have demonstrated the success when using recurrent neural networks (RNNs) and long short-
term memory networks (LSTMs) to directly utilize protein sequences and ligand simplified molecular-input
line-entry system (SMILES) [21, 33, 34, 35]. DeepDTA [35] performs training on label encoded SMILES
and protein sequences after using 1D CNNs to obtain the representations. DeepAffinity [21] follows a similar
approach but instead of using protein sequence and secondary structure as inputs. Its architecture combines
RNNs, attention mechanism, and 1D CNNs. BACPI [33] deploys the bi-directional attention mechanism which
facilitates the interaction between the ligand and protein representations, and applied graph attention networks for
learning ligand representations. DeepDTAF [34] is similar to DeepAffinity, it also encodes secondary structural
information along with one-hot encoded protein sequence representation based on amino acids and utilizes the
protein pocket information as a set of features. There are two main limitations with both the structure-based
and structure-free deep learning models. Firstly, they don’t perform rigorous OOD testing, which is the reason
why they fail to perform well on real-world unseen data. While some efforts have been made to assess the
generalizability of models. Secondly, these models lack the capability to provide confidence estimates for
their predictions. It is well-known that machine learning models are not perfectly accurate, therefore having
knowledge of confidence associated with predictions in the sensitive field of drug discovery is crucial.

A.1.3 Out-Of-Distribution generalization

The out-of-distribution (OOD) generalization problem arises when the distribution of test data significantly
deviates from that of the training data. Notably, this deviation remains undisclosed and uncharacterized during
the training phase of the model [52]. Existing methods in machine learning commonly assumed that both
training and testing data are independent and identically distributed (iid) [53]. This assumption does not hold
in many real-world scenarios, especially when dealing with new PLIs in new environments. The main aim is
to evaluate how well the model would adapt and perform to these deviations when confronted with real-world
unseen data. deep learning is susceptible to performance degradation under these deviations. It has inspired
researchers to focus on tackling the issue of OOD generalization [12, 54, 55, 56, 57]. PortalCG [12] is one of
few sequence-based PLI prediction methods that address the OOD generalization problem. It utilizes sequence
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pre-training, structure-based fine-tuning, and meta-learning to improve the model performance under an OOD
setting. However, PortalCG focuses on binary classification (binding or non-binding) of protein-ligand pairs
rather than predicting binding affinity.

A.1.4 Uncertainty quantification in biology

The knowledge of uncertainty is highly crucial in the safety-sensitive applications that involve human lives.
Thus, uncertainty quantification has become more common in various fields such as computer vision [41, 58, 59]
and natural language processing [60, 61, 62]. However, the application of uncertainty quantification to the
field of biology is relatively limited. Zeng and Gilford [31] implement an ensemble of NNs to obtain the
uncertainty associated with the predictions for peptide-MHC binding for an improved therapeutic drug design
process. But, these ensemble-based techniques aren’t as accurate as the Gaussian Process (GP) algorithms
for prediction of uncertainty. GPs provide a distribution over functions, enabling them to capture the inherent
uncertainty in predictions and make more reliable inferences. By providing this distribution, GPs are able to
capture the possible outcomes and likelihood facilitating more informed decision making process. Hie et al.
[29] propose a combined GP and multi-layer perceptron (MLP) approach for various biological tasks, including
predicting protein-kinase binding affinity, generative compound design with protein kinase B activity, and protein
fluorescence prediction. For binding affinity prediction, they observe that GP-based models provide accurate,
low-uncertainty predictions, enhancing the selection of promising compound-kinase pairs for validation. In
generative compound design, GP-based models outperform MLP-based models in terms of binding affinity.
Along with simply using GP, they use it alongside MLP (GP+MLP) as proposed by Qiu et al. [30] and notice
similar or better results when compared to the GP.

A.2 Model Architecture & Hyperparameters

Table A.1, and Table A.2 depicts the model architecture, configuration, and hyperparameters.

Table A.1: Model and training hyperparameters

Module Hyperparameter Value

Binding Affinity
Prediction Module

Learning Rate 0.0001
Batch Size 256

Epochs 50

Loss NLPD-MSE
Loss

Optimizer Adam

Uncertainty Quantification
Module

Learning Rate 0.0001
Batch Size 32

Epochs 50

Loss Exact Marginal
Log Likelihood

Optimizer ‘Adam
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Table A.2: Model Architecture Configuration

Modules Component Parameter Value

Protein Sequence Module
ESMFold Embedding

Dimension [700, 384]

ResNet Layers 5
Embedding
Dimension 704

Ligand Module GNN

Embedding
Dimension 300

Layers 5
Jump

Knowledge last

Dropout 0.4
Backbone GIN

Protein Ligand Interaction Module
Attentive
Pooling

Dropout 0.4
Embedding
Dimension 1004

Multi-layer
Perceptron Layers 4

Uncertainty Quantification Module
Gaussian
Process

Regression

Kernels Radial basis
function

Likelihood Gaussian
Likelihood

Mean Linear
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