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Abstract

Being able to identify regions within or around proteins, to which ligands can
potentially bind, is an essential step to develop new drugs. Binding site iden-
tification methods can now profit from the availability of large amounts of 3D
structures in protein structure databases or from AlphaFold predictions. Current
binding site identification methods rely on geometric deep learning, which takes
geometric invariances and equivariances into account. Such methods turned out
to be very beneficial for physics-related tasks like binding energy or motion tra-
jectory prediction. However, their performance at binding site identification is
still limited, which might be due to limited expressivity or oversquashing effects
of E(n)-Equivariant Graph Neural Networks (EGNNs). Here, we extend EGNNs
by adding virtual nodes and applying an extended message passing scheme. The
virtual nodes in these graphs both improve the predictive performance and can also
learn to represent binding sites. In our experiments, we show that VN-EGNN sets
a new state of the art at binding site identification on three common benchmarks,
COACH420, HOLO4K, and PDBbind2020.

1 Introduction

Binding site identification remains a central computational problem in drug discovery. With
the advent of AlphaFold (Jumper et al., 2021), millions of 3D structures of proteins have been
unlocked for further investigation by the scientific community (Tunyasuvunakool et al., 2021; Cheng
et al., 2023). Information about the 3D structure of a protein can provide crucial information about
its function. One of the most important fields that should profit from these 3D structures, is drug
discovery (Ren et al., 2023; Sadybekov and Katritch, 2023). It has been envisioned that the availability
of 3D structures will allow to purposefully design drugs that alter protein function in a desired way.
However, to enable this structure-based drug design, further computational approaches have to be
utilized/employed, concretely either docking or binding site identification methods (Lengauer and
Rarey, 1996; Cheng et al., 2007; Halgren, 2009). While docking approaches predict the location
of a specific small molecule, called ligand, within a protein’s active site upon binding, binding site
identification aims at finding regions on the protein likely to form a binding pocket and interact with
unknown ligands (Schmidtke and Barril, 2010). For both approaches, deep learning methods, and
specifically geometric deep learning have brought significant advances (Méndez-Lucio et al., 2021;
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Figure 1: Overview of binding site identification methods. Top Left: Traditional methods, based on
segmentation of a voxel grid, in which the pocket center is calculated as the geometric center of the
positively labeled voxels. Bottom Left: Geometric Deep Learning approaches, such as EGNN, in
which the pocket center is calculated as the geometric center of the positively labeled nodes. Right:
VN-EGNN approach (ours): the predicted binding site center is the position of the virtual node after
L message passing layers.

Lu et al., 2022; Corso et al., 2023). In this work, we aim at improving binding site identification
through geometric deep learning methods.

Methods to identify binding sites. The identification of binding sites relies on the successful
combination of physical, chemical and geometric information. Initially, machine learning methods
for binding site prediction were based on carefully designed input features due to their tabular
processing structure. For instance, FPocket (Le Guilloux et al., 2009) relies on Voronoi tessellation
and alpha spheres (Liang et al., 1998) and additionally takes an electronegativity criterion into account.
A random forest based method, which makes use of the protein surface, is P2Rank (Krivák and
Hoksza, 2018). With the advent of end-to-end deep learning and especially with the breakthrough
of convolutional (Lecun et al., 1998) and graph neural networks (GNNs) (Scarselli et al., 2009;
Defferrard et al., 2016; Kipf and Welling, 2017; Gilmer et al., 2017; Satorras et al., 2021), the
construction of input features can be learned which helped to advance predictive quality. For
instance, DeepSite (Jiménez et al., 2017) is a voxel-based 3D convolutional neural network for
binding site prediction. Convolutional operations on the 3D space are, however, computationally very
demanding and so quickly other approaches to tackle binding site identification were developed, e.g.,
DeepSurf (Mylonas et al., 2021) or PointSite (Yan et al., 2022). DeepSurf operates on surface-based
representations and places several voxelized grids on the protein’s surface, while PointSite is based
on a form of sparse convolutions to reduce the computational overhead and keep sparse regions in
the 3D space to be sparse. Typical convolutional networks, however, do not perform well at binding
site identification likely because of the irregularity of protein structures and due to the fact that
proteins may be arbitrarily rotated and shifted in space (Zhang et al., 2023). To overcome these issues,
EquiPocket (Zhang et al., 2023) uses E(n)-Equivariant Graph Neural Networks (EGNNs) (Satorras
et al., 2021) on a protein surface graph. Here, we follow the approach of EquiPocket to use EGNNs
for identifying binding pockets. Although EGNNs are prime candidates for this task, they exhibit
poor performance at binding site identification (Zhang et al., 2023), which might be due to a) their
limited expressivity (Joshi et al., 2023) or b) their inability to learn to represent binding sites. We aim
at alleviating both problems by extending EGNNs with so-called virtual nodes.

Virtual nodes have improved message-passing neural networks (MPNNs) w.r.t. expressive
power. Virtual nodes, sometimes called super-nodes or supersource-nodes, that are introduced into a
message-passing scheme and connected to all other nodes, have been used and investigated in several
works. In a benchmark setting Hu et al. (2020) showed that adding virtual nodes tends to increase the
predictive performance. Hwang et al. (2022) provide a theoretical analysis of the benefits of virtual
nodes in terms of expressiveness, demonstrate the increased expressiveness of GNNs with virtual
nodes and also hint at the fact that such nodes can decrease oversmoothing. Cai et al. (2023) and
Cai (2023) show that an MPNN with one virtual node, connected to all nodes, can approximate a
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Transformer layer. Low rank global attention (Puny et al., 2020) can be seen as one virtual node,
which improves expressiveness. Practically, such nodes have already been suggested in the original
work by Gilmer et al. (2017) and they were even mentioned earlier in Scarselli et al. (2009) and used
in application areas such as drug discovery (Li et al., 2017; Pham et al., 2017; Ishiguro et al., 2019).
Geometric GNNs, such as EGNNs, might as well suffer from limited expressiveness, oversmoothing
(Rusch et al., 2023) or similar effects as conventional GNNs. Consequently, Joshi et al. (2023)
investigated the power of these networks in greater detail and argue for the case of EGNNs that
the method might suffer from oversquashing (Alon and Yahav, 2021; Topping et al., 2022). Alon
and Yahav (2021) themselves mention that virtual nodes might have been used as a technique to
overcome oversquashing effects. In order to reduce oversquashing effects in the usage of EGNNs for
binding site identification, we suggest to extend EGNNs with virtual nodes and introduce an adapted
message passing scheme. To the best of our knowledge, this is the first application of virtual nodes to
geometric graph networks.

Virtual nodes in EGNNs can learn representations of unknown physical entities, such as binding
sites. Geometric graph networks, such as EGNNs, usually have coordinate features associated with
their node features, but could also have higher order features (Brandstetter et al., 2021). We follow
the same approach for the virtual nodes in our virtual node EGNN (VN-EGNN). Since protein graphs
usually contain a large number of nodes, we introduce several virtual nodes, which we distribute
evenly on a sphere around the protein. Although our network is trained w.r.t. correctly segmenting
conventional nodes according to whether they represent a binding pocket atom or not, we empirically
observed that many of the virtual nodes indeed seemed to converge towards the actual physical
binding positions of ligands on the protein. This gives rise to the assumption that virtual node features
might form an abstract representation of the binding site. It would furthermore allow to employ losses
directly on the binding site representations, which could in turn lead to improved performance.

Contributions. In this work, we contribute the following: a) We propose a novel type of graph neural
network geared towards the identification of binding sites of proteins. b) We demonstrate that the
virtual nodes in the message-passing scheme learn useful representations of binding pockets. c) We
assess the performance of other methods, baselines and our method on benchmarking datasets.

2 Equivariant Graph Neural Networks with Virtual Nodes

Since proteins are described by atom coordinate measurements in arbitrary coordinate systems
and since the atoms might be quite unevenly distributed in space, it seems attractive to employ
geometric deep networks, as these architectures allow predictions that are translation-, rotation-, and
permutation-equivariant by design1. Especially, we decided to build upon EGNNs (Satorras et al.,
2021) due to their simplicity and robustness.

Notational preliminaries. We give an overview on variable and symbol notation in Appendix A
and a more detailed description and discussion on how we represent proteins and binding sites
in Appendices B.1 and B.2 respectively. To quickly summarize, the coordinates of protein atom
centers are denoted as x ∈ R3, atom property features as h ∈ RD. Proteins are characterized by a
neighborhood graph P , where atoms are represented as nodes and edges are drawn between spatially
close atoms. We use N (i) to indicate neighbouring nodes to node i within P and denote edge features
between atoms as aij . Atoms close to binding site centers are assigned a label yn = 1 and yn = 0,
otherwise. We assume there are M known binding pockets, which are characterized by their center
coordinates y ∈ R3. We denote predicted atom labels by ŷn ∈ [0, 1] and predicted binding pocket
center points by ŷ ∈ R3. Thereby, we predict a fixed number of K center points.

Application of EGNNs to binding site prediction. EGNNs are straightforward to apply to our
protein graph P to predict node labels yn, i.e. we may use them to perform a node-level classification
task. We state the layer-wise (l) message passing scheme of EGNNs as given by Satorras et al. (2021)
in eqs. (1) to (4), where we initialize x0

n := xn (atom positions) and h0
n = hn (atom properties) for

each atom n, which corresponds to a node in P:

1For the purpose of being self-contained, we list these properties in Appendix C.
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We can extract predictions ŷn for each atom n by a read-out function applied to the last message
passing step L, i.e., we have: ŷn = σ(w⊤hL

n) with an activation function σ and (shared) parameters
w.

VN-EGNN: Extension of EGNN with virtual nodes. To tackle oversquashing effects, we extend the
neighborhood graph P of our protein with a set of K virtual nodes, which exhibit edges to all other
nodes. To be able to process this extended graph, we extend EGNNs by locating the virtual nodes at
coordinates z1, . . . , zK ∈ R3 and associating them with a set of properties v1, . . . ,vK ∈ RD. The
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then consists of three phases, in which atom embeddings and atoms’ coordinate embeddings are
updated twice:
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Here, ϕe(aa) , . . . ,ϕh(va) are again MLPs. The MLPs ϕ. are layer-specific, i.e. ϕl. and currently do
not consider edge features dij and aij . To keep the notation uncluttered, we skipped the layer index l
in above formulae.

Initialization of virtual nodes in VN-EGNN. The K virtual nodes are initially evenly distributed
across a sphere using a Fibonacci grid (see Appendix F), where the radius is defined as the distance
between the protein center and its most distant atom. Virtual node property features vk are initially
set to a fixed, but learnable vector c ∈ RD.

The following proposition shows, that analogously to EGNNs, VN-EGNNs are equivariant with
respect to roto-translations by construction:

Proposition 1. Equivariant graph neural networks with virtual nodes as defined in eqs. (7) to (18)
are equivariant with respect to roto-translations of the input and virtual node coordinates.

Proof. See Appendix D.

Objective. As mentioned in Section 1, and as demonstrated by initial computational experiments
in Section 3, we could observe, that virtual node locations zL1 , . . . , z

L
K at the last layer tended to

converge towards the observed binding site center region points y1, . . . ,yM , although VN-EGNN
was trained to only predict the labels yn correctly (semantic segmentation, for further details see
Appendix G). In this setting we used a Dice loss (see Appendix B.4) on the atom-level predictions
ŷ1, . . . , ŷN .

These initial experiments and the thereof following interpretation of virtual node points as binding
site region center points, motivated us to extend our method to directly predict the binding site region
center points correctly, i.e. we aim for a minimum distance between predicted and experimentally
found region centers. Consequently, for further experiments we used a multi-modal objective function
summing a distance loss, which we denote as binding site center loss, and a semantic segmentation
loss. This allows to directly tackle the much more challenging problem to predict binding site region
center points and to extract predictions for these points as outputs of the last EGNN layer: ŷk := zLk
(1 ≤ k ≤ K).

L = Dist ({y1, . . . ,yM}, {ŷ1, . . . , ŷK}) + αDice ((y1, . . . , yN ), (ŷ1, . . . , ŷN )) (19)

where α > 0 is a hyperparameter and which is further detailed in Appendix B.4.

3 Experiments

3.1 Datasets

scPDB (Desaphy et al., 2015) is a frequently utilized dataset for binding site prediction (Kandel
et al., 2021; Stepniewska-Dziubinska et al., 2020), encompassing both protein and ligand structures.
We employed the 2017 release of scPDB in the training and validation. This release comprises 17,594
structures, 16,034 entries, 4,782 proteins, and 6,326 ligands.

PDBbind (Wang et al., 2004) is a widely recognized dataset integral to the study of protein-ligand
interactions. This dataset provides detailed 3D structural information of proteins, ligands, and their
respective binding sites, complemented by rigorously determined binding affinity values derived from
laboratory evaluations. For our work, we draw upon the v2020 edition, which is divided into two
sets: the general set (comprising 14,127 complexes) and the refined set (containing 5,316 complexes).
While the general set encompasses all protein-ligand interactions, only the refined set, curated for its
superior quality from the general collection, is used in our experiments.

COACH420 and HOLO4K are benchmark datasets utilized for the prediction of binding sites, as
originally detailed by Krivák and Hoksza (2018). Following the methodologies of Krivák and Hoksza
(2018); Mylonas et al. (2021); Aggarwal et al. (2022), we adopt the so-called mlig subsets from each
of these datasets, which encompass the significant ligands pertinent to binding site prediction.
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3.2 Evaluation Setup

Dataset split. In our experimental framework, we utilized the scPDB dataset for training, with 10 %
reserved explicitly for validation and hyperparameter selection. Testing was subsequently conducted
on the COACH420, HOLO4K and PDBbind datasets.

Metrics. In assessing our experimental outcomes, we leveraged the DCC and DCA metrics, which
are well-established in the literature (see e.g., Chen et al., 2011). The DCC is the distance between
the predicted and actual binding site centers, whereas the DCA is the shortest distance between the
predicted binding site center and any atom of the ligand. Following the criteria used in Stepniewska-
Dziubinska et al. (2020) and Zhang et al. (2023), predictions with a DCC/DCA below a certain
threshold are considered successful, which is commonly referred to as the DCC/DCA success rate.
Adhering to these works, we maintained a threshold of 4Å throughout our experiments.

Methods compared. We benchmark our framework against various models spanning over different
categories: Geometry-based: Fpocket. CNN-based: DeepSite, Kalasanty, DeepSurf. Topological
graph-based: GAT, GCN, GCN2. Spatial graph-based: SchNet, EGNN, EquiPocket. Figure 1
provides a comparative overview, illustrating the distinctions between previous methods and our
approach.

3.3 Experimental Settings

Pre-processing. For the scPDB dataset, structures were clustered based on their Uniprot IDs. From
each cluster, protein structures with the longest sequences were selected, in alignment to the strategies
used in Krivák and Hoksza (2018) and Zhang et al. (2023). For comprehensive data preparation
across all datasets, solvent atoms were excluded, and any absent hydrogen atoms were added back.
Erroneous structures were removed.

Graph Features. We employed an atom graph representation, incorporating only those atoms that
are within a 2Å distance to the protein solvent accessible surface. The surface calculations were
conducted using the MSMS software (Sanner et al., 1996). For the nodal features of the atom nodes,
we focused on three specific feature types: the atom type, the associated residue type of the atom,
and the distance of the atom to the computed surface. For the characterization of atom and residue
types, we utilized learned embeddings.

Post-Processing. Our final model architecture included 8 virtual nodes. However, upon observation,
certain virtual nodes exhibited convergence to similar positions. To cluster these spatially similar
virtual nodes, we applied the Mean-Shift algorithm (Comaniciu and Meer, 2002), yielding an average
of 5 predictions per protein.

Implementation Details. We optimized our model using the AdamW optimizer (Loshchilov and
Hutter, 2017) over 260 epochs, with a batch size of 64. The best-performing model was selected
based on its performance on the validation set. Each multi-layer perceptron ϕe(aa) , . . . ,ϕh(va) in our
model has two linear layers, a 0.1 dropout rate (Hinton et al., 2012), and a SiLU activation function
(Elfwing et al., 2018). ϕxva is special because it contains a learnable scaling parameter λ that is
multiplied with the output node of the MLP. We set the node feature size to 30 and the message
size to 50. Layernorm (Ba et al., 2016) was used to normalize the feature representations during
message passing. The number of virtual nodes was set to 8. An MLP was employed on the learned
embeddings, to align them with the node feature size. Subsequently, a read out function was applied
to the atom feature nodes, producing the final predictions for the segmentation. All hyperparameters
tested can be found in Table E1 (Appendix E).

3.4 Results

In Table 1, we present the success rates for the DCC and DCA metrics across the benchmark datasets
COACH420, HOLO4K, and PDBbind. Overall, our method outperformed all previous methods. Our
empirical findings highlight that for the COACH420 and HOLO4K datasets, in terms of the DCC
metric, our method significantly outperforms our main baselines DeepSurf and EquiPocket. Also
for the DCA metric, our model shows a notable improvement for these datasets. For the PDBbind
dataset, the advantage in the DCC metric is less pronounced. Yet, within the PDBbind context, our
model achieves a notably improved score in the DCA metric compared to the EquiPocket baseline.
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Table 1: Performance at binding site identification in terms of DCC and DCA success rates.a

Methods Param COACH420 HOLO4K PDBbind2020

(M) DCC↑ DCA↑ DCC↑ DCA↑ DCC↑ DCA↑
Fpocket (Le Guilloux et al., 2009)b \ 0.228 0.444 0.192 0.457 0.253 0.371

DeepSite (Jiménez et al., 2017)b 1.00 \ 0.564 \ 0.456 \ \
Kalasanty (Stepniewska-Dziubinska et al., 2020)b 70.64 0.335 0.636 0.244 0.515 0.416 0.625
DeepSurf (Mylonas et al., 2021)b 33.06 0.386 0.658 0.289 0.635 0.510 0.708

GAT (Veličković et al., 2017)b 0.03 0.039(0.005) 0.130(0.009) 0.036(0.003) 0.110(0.010) 0.032(0.001) 0.088(0.011)
GCN (Kipf and Welling, 2017)b 0.06 0.049(0.001) 0.139(0.010) 0.044(0.003) 0.174(0.003) 0.018(0.001) 0.070(0.002)
GAT + GCNb 0.08 0.036(0.009) 0.131(0.021) 0.042(0.003) 0.152(0.020) 0.022(0.008) 0.074(0.007)
GCN2 (Chen et al., 2020)b 0.11 0.042(0.098) 0.131(0.017) 0.051(0.004) 0.163(0.008) 0.023(0.007) 0.089(0.013)

SchNet (Schütt et al., 2017)b 0.49 0.168(0.019) 0.444(0.020) 0.192(0.005) 0.501(0.004) 0.263(0.003) 0.457(0.004)
EGNN (Satorras et al., 2021)b 0.41 0.156(0.017) 0.361(0.020) 0.127(0.005) 0.406(0.004) 0.143(0.007) 0.302(0.006)

EquiPocket (Zhang et al., 2023)b 1.70 0.423(0.014) 0.656(0.007) 0.337(0.006) 0.662(0.007) 0.545(0.010) 0.721(0.004)

VN-EGNN (ours) 0.21 0.526(0.016) 0.677(0.011) 0.498(0.004) 0.713(0.006) 0.569(0.014) 0.795(0.011)
a The standard deviation across training re-runs is indicated in parentheses. b Results from Zhang et al. (2023).

This suggests our model’s adeptness at identifying the ligand’s approximate position, even if it does
not pinpoint the exact central binding site, which is to be expected in this setting in which the ligand
is unknown.

4 Discussion

In the application area of protein binding site identification, we have extended the EGNN approach
with virtual nodes which alleviates the limited expressivity and the inability to learn representations of
unknown physical entities. We evaluated its performance using three prominent datasets: COACH420,
HOLO4K, and PDBbind, on which our method set a new state-of-the-art. To the best of our
knowledge, prior methods have determined the binding site center solely based the geometric center,
calculated from segmented parts of the protein surface. In contrast, our VN-EGNN approach directly
represents the binding site centers as virtual nodes.

Limitations. While our model offers predictions of the binding pockets without a specific ranking,
on average five binding pockets are predicted per protein. We believe this number maintains a balance
between offering a reasonable amount of predictions and ensuring the metrics are still relevant. In
future work we will equip VN-EGNN with more virtual nodes, but also a sophisticated ranking
strategy on the virtual node representations.
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A Notation Overview

Table A1: Overview of used symbols and notations
Definition Symbol/Notation Type

number of atom nodes N N
number of virtual nodes K N0

number of known binding pockets M N0

dimension of node features D N
dimension of messages E N
number of message passing layers/steps L N
node indices i, j, k, n {1, ...,K} or {1, ..., N}
binding pocket index m {1, ...,M}
layer/step index l {1, ..., L}
index set of 10 nearest neighbor atoms N (i) {1, ..., N}10

atom node coordinates xl
i R3

virtual node coordinates zlj R3

atom node feature representation hl
i RD

virtual node feature representation vl
j RD

edge feature between atoms aij R
edge feature between atom and virtual node dij R
ground-truth atom label yn {0,1}
predicted atom label ŷn [0, 1]
ground-truth binding site center ym R3

prediction of binding site center ŷk R3

messages* m
(aa)
ij ,m

(av)
ij ,m

(va)
ij RE

neural networks for message passing*:
message calculation ϕe(aa) ,ϕe(av) ,ϕe(va) RD×RD×R×R → RE

coordinate update ϕx(aa) , ϕx(av) , ϕx(va) RE → R
feature update ϕh(aa) ,ϕh(av) ,ϕh(va) RD×RE → RD

segmentation loss Lsegm RN × RN → R
binding site center loss Lbsc R3×M × R3×K → R
* The superscripts (aa), (av) and (va) represent the message passing direction (atom to atom, atom to virtual node, virtual node to

atom).

B Problem Statement

B.1 Representation of proteins.

The 3D structure of a protein is usually given by some measurement of its atoms that form the
primary amino acid sequence of the protein and the absolute coordinates for the atoms are given
as 3D points x ∈ R3. The atoms themselves as well as the amino acids are characterized by their
physical, chemical and biological properties. We assume that these properties are summarized by
feature vectors h ∈ RD, which are located at the atom centers (either of all the atoms or only
the ones forming the protein backbone). We formally represent proteins by a neighborhood graph
P = (PN ,PE) with N atom-property pairs, i.e. PN = {(xn,hn)}Nn=1 with xn ∈ R3 and hn ∈ RD

and a set of directed edges PE which consist of atom-property pairs (i, j). Each node i has incoming
edges from the 10 nearest nodes j that are closer than 30Å according to the Euclidean distance
∥xi − xj∥.

B.2 Representation of binding sites.

Binding sites are regions around or within proteins, to which ligands can potentially bind. Basically,
one can either describe binding sites explicitly or implicitly. In their explicit representation binding
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sites would be directly described by the location specifics of the regions, where ligands are located,
especially by a region center point. In their implicit representation, binding sites would be described
by the atoms of the protein, which surround the ligand. Atoms close to the ligand would be marked as
binding site atoms. It might be worth mentioning, that several binding sites per protein are possible.

Formally, for the explicit representation, we describe the (experimentally observed) binding site center
points of M distinct binding sites by ym ∈ R3 with 1 ≤ m ≤M . For the implicit representation, we
assign to each protein atom n a label yn ∈ {0, 1}, which is set to 1 if the atom center is within the
threshold distance of observed binding ligands, and 0 otherwise.

B.3 Objective.

From an abstract point of view, we want to learn a predictive machine learning model F , parameterized
by ω, which maps proteins characterized by the positions of their atoms together with their properties
to a binary prediction per atom, whether it might form a binding site, and to K 3D coordinates
representing binding site region center points:

Fω :
N×

n=1

 R3 × RD︸ ︷︷ ︸
protein 3D atom

coords with
D-dim features

 7→ [0, 1]N︸ ︷︷ ︸
sem. segm.

protein atoms

:= F segm
ω

×
K×

k=1

R3

︸ ︷︷ ︸
pos. pred.
virt. nodes

:= Fbsc
ω

(B.1)

Fω ((x1,h1), . . . , (xN ,hN )) = ((ŷ1, . . . , ŷN ), (ŷ1, . . . , ŷK))

F segm
ω ((x1,h1), . . . , (xN ,hN )) := proj1Fω ((x1,h1), . . . , (xN ,hN ))

Fbsc
ω ((x1,h1), . . . , (xN ,hN )) := proj2Fω ((x1,h1), . . . , (xN ,hN )) ,

where proji is a projection, that gives the i-th component (i.e., prediction of the semantic segmenation
part or coordinate predicitons or virtual nodes). Note, that for our predictive model, we use a fixed
number K of binding point centers, while indeed M might have been observed for a specific protein.

B.4 Utilized Loss Functions.

Segmentation loss. For semantic segmentation (i.e., the prediction of F segm
ω ), we use a Dice loss,

that is based on the continuous Dice coefficient (Shamir et al., 2019), with ϵ = 1:

Lsegm = Dice ((y1, . . . , yN ), (ŷ1, . . . , ŷN )) := 1−
2
∑N

n=1 yn ŷn + ϵ∑N
n=1 yn +

∑N
n=1 ŷn + ϵ

(B.2)

Perfect predictions lead to a Dice loss of 0, while perfectly wrong predictions would lead to a Dice of
1 (in case ϵ = 0 and the denominator is > 0).

Binding site center loss. For prediction of the binding site region center points (i.e., the prediction
of Fbsc

ω ), we use the (squared) Euclidean distance between the set of predicted points and the set of
observed ones. More specifically, we assume to be given M observed center points {y1, . . . ,yM}.
Each of the binding site center points should be detected by at least one of the K outputs from Fbsc

ω ,
which translates to using the minimum squared distance to any predicted center point for any of the
observed center points:

Lbsc = Dist ({y1, . . . ,yM}, {ŷ1, . . . , ŷK}) := 1

M

M∑
m=1

min
k∈1,...,K

∥ym − ŷk∥2. (B.3)

Our optimization objective is then the sum of the Dice and the Dist loss:

αDice ((y1, . . . , yN ), (ŷ1, . . . , ŷN )) + Dist ({y1, . . . ,yM}, {ŷ1, . . . , ŷK}) (B.4)

with the hyperparameter α = 1.
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C Background on Group Theory and Equivariance

A group in the mathematical sense is a set G along with a binary operation ◦ : G×G→ G with the
following properties:

• Associativity: The group operation is associative, i.e. (g ◦ h) ◦ k = g ◦ (h ◦ k) for all
g, h, k ∈ G.

• Identity: There exists a unique identity element e ∈ G, such that e ◦ g = g ◦ e = g for all
g ∈ G.

• Inverse: For each g ∈ G there is a unique inverse element g−1 ∈ G, such that g ◦ g−1 =
g−1 ◦ g = e.

• Closure: For each g, h ∈ G their combination g ◦ h is also an element of G.

A group action of group G on a set X is defined as a set of mappings Tg : X → X which associate
each element g ∈ G with a transformation on X , whereby the identity element e ∈ G leaves X
unchanged (Te(x) = x ∀x ∈ X).

An example is the group of translations T on Rn with group action Tt(x) = x + t ∀x, t ∈ Rn,
which shifts points in Rn by a vector t.

A function f : X → Y is equivariant to group G with group action Tg if there exists an equivalent
group action Sg : Y → Y on G such that

f(Tg(x)) = Sg(f(x)) ∀x ∈ X, g ∈ G.

For example, a function f : Rn → Rn is translation-equivariant if a translation of an input vector
x ∈ Rn by t ∈ Rn leads to the same transformation of the output vector f(x) ∈ Rn, i.e. f(x+ t) =
f(x) + t.

Equivariant graph neural networks (EGNNs) ψ as defined by Satorras et al. (2021) exhibit three types
of equivariances:

1. Translation equivariance: EGNNs are equivariant to column-wise addition of a vector
t ∈ Rn to all points in a point cloud X ∈ Rn×N : ψ(X+ t) = ψ(X) + t.

2. Rotation and reflection equivariance: Rotation or reflection of all points in the point cloud
by multiplication with an orthogonal matrix R ∈ Rn×n leads to an equivalent rotation of
the output coordinates: ψ(RX) = Rψ(X).
The group spanning all translations, rotations and reflections in Rn is called Euclidean
group, denoted E(n), as it preserves Euclidean distances. A proof for E(n)-equivariance of
VN-EGNN can be found in Appendix D.

3. Permutation equivariance: The numbering of elements in a point cloud or graph nodes does
not influence the output, i.e. multiplication with a permutation matrix P ∈ RN×N leads to
the same permutation of output nodes: ψ(XP ) = ψ(X)P . This property holds for message
passing graph neural networks in general, as they aggregate and update node information
based on local neighborhood structure, regardless of the order in which nodes are presented.

D Equivariance of VN-EGNN

In this section we show that the equivariance property of EGNN (Satorras et al., 2021) extends to
VN-EGNN, i.e., that rotation by an orthogonal matrix R ∈ R3×3 and translation by a vector t ∈ R3

of atom and virtual node coordinates leads to an equivalent transformation of output coordinates
while leaving node features invariant when applying the message passing steps of VN-EGNN.
Proposition 1. (more formal) Equivariant graph neural networks with virtual nodes (VN-EGNN) as
defined in eqs. (7) to (18) are equivariant with respect to roto-translations of the input and virtual node
coordinates. With the definitions H l := (hl

1, . . . ,h
l
N ), Xl := (xl

1, . . . ,x
l
N ), V l := (vl

1, . . . ,v
l
K),

Zl := (zl1, . . . , z
l
K), and

(
H l+1,Xl+1,V l+1,Zl+1

)
= VN-EGNN

(
H l,Xl,V l,Zl

)
2, which is

2For simplicity of notation, we re-order and re-group input and output data vectors of VN-EGNN compared
to the main text here to be able to use the matrices H,X,V ,Z as inputs and outputs.

14



analogous to eq. (6), the following holds (equivariance to roto-translations):(
H l+1,RXl+1 + t,V l+1,RZl+1 + t

)
= VN-EGNN

(
H l,RXl + t,V l,RZl + t

)
, (D.1)

where the addition Xl + t is defined as column-wise addition of the vector t to the matrix X.

Proof. We will proceed by tracking the propagation of node roto-translations through the VN-EGNN
network. First, we want to show invariance in eq. (7) in phase I of message passing, equivalently to
Satorras et al. (2021), i.e.:

m
(aa)
ij = ϕe(aa)(hl

i,h
l
j , ∥Rxl

i + t− [Rxl
j + t]∥, aij) = ϕe(aa)(hl

i,h
l
j , ∥xl

i − xl
j∥, aij) (D.2)

Assuming the initial node features h0
i and edge representations aij do not encode information about

the original coordinates x0
i , it remains to be shown that the Euclidean distance between two nodes is

also invariant to translation and rotation:

∥Rxl
i + t− [Rxl

j + t]∥2 = ∥Rxl
i −Rxl

j∥2

= (xl
i − xl

j)
⊤R⊤R(xl

i − xl
j)

= (xl
i − xl

j)
⊤I(xl

i − xl
j)

= ∥xl
i − xl

j∥2

∥Rxl
i + t− [Rxl

j + t]∥ = ∥xl
i − xl

j∥

(D.3)

Consequently, the sum over messages (eq. (8)) and the feature update function (eq. (10)), which only
uses the summed messages and previous node features as input, are invariant as well, leaving the
intermediate output feature representations hl+1/2

i independent of coordinate transformations.

For the remaining equation (eq. (9)) of phase I the equivariance property can be shown as follows,
where eq. (D.3) is used in the first equality:

Rxl
j + t+

1

|N (j)|
∑

i∈N (j)

Rxl
i + t− [Rxl

j + t]

∥Rxl
i + t− [Rxl

j + t]∥
ϕxaa(m

(aa)
ij )

= Rxl
j + t+

1

|N (j)|
∑

i∈N (j)

Rxl
i + t− [Rxl

j + t]

∥xl
i − xl

j∥
ϕxaa(m

(aa)
ij )

= Rxl
j + t+

1

|N (j)|
R

∑
i∈N (j)

xl
i − xl

j

∥xl
i − xl

j∥
ϕxaa(m

(aa)
ij )

= R

xl
j +

1

|N (j)|
∑

i∈N (j)

xl
i − xl

j

∥xl
i − xl

j∥
ϕxaa(m

(aa)
ij )

+ t

= Rx
l+1/2
j + t

(D.4)

In phase II of message passing, we input the updated atom node coordinates Rx
l+1/2
i + t from

eq. (D.4) together with virtual node coordinates Rzlj + t, both subjected to identical rotation and
translation. Invariance of eqs. (11), (12) and (14) can be deduced similarly to above, using the
invariance properties of node features h

l+1/2
i and vl

i, edge features aij and dij , and Euclidean
distance (eq. (D.3)):

m
(av)
ij = ϕe(av)(h

l+1/2
i ,vl

j , ∥Rx
l+1/2
i + t− [Rzlj + t]∥, dij)

= ϕe(av)(h
l+1/2
i ,vl

j , ∥x
l+1/2
i − zlj∥, dij)

(D.5)

Thus, the output virtual node features vl+1
j are invariant to roto-translations of node coordinates.

15



Equivariance of output virtual node coordinates zl+1
j follows analogously to eq. (D.4):

Rzlj + t+
1

N

N∑
i=1

Rx
l+1/2
i + t− [Rzlj + t]

∥Rx
l+1/2
i + t− [Rzlj + t]∥

ϕxav (m
(av)
ij ) = Rzl+1

j + t (D.6)

The same derivations of message invariance

m
(va)
ij = ϕe(va)(vl+1

i ,h
l+1/2
j , ∥Rzl+1

i + t− [Rx
l+1/2
j + t]∥, dij)

= ϕe(va)(vl+1
i ,h

l+1/2
j , ∥zl+1

i − x
l+1/2
j ∥, dij)

(D.7)

and coordinate equivariance

Rx
l+1/2
j + t+

1

K

K∑
i=1

Rzl+1
i + t− [Rx

l+1/2
j + t]

∥Rzl+1
i + t− [Rx

l+1/2
j + t]∥

ϕxva(m
(va)
ij ) = Rxl+1

j + t (D.8)

can be applied to phase III (eqs. (15) to (18)), proving that invariance of feature representations hl+1
j

and equivariance of coordinates xl+1
j holds true for atom nodes as well, thus, proving proposition 1.

E Hyperparameters and hyperparameter selection

Table E1 shows the evaluated hyperparameters. Bold indicates the parameters used in final model.

hyperparmater considered and selected values

optimizer {AdamW, Adam }
learning rate {0.001, 0.0001}
activation function { SiLU, ReLU }
dimension of node features D {20, 30}
dimension of the messages P {40, 50}
number of message passing layers/steps L {2, 3, 4, 5}
number of virtual nodes K {4, 8}

Table E1: A list of considered and selected hyperparameters.

F Fibonacci grid

The Fibonacci Sphere (Swinbank and James Purser, 2006) offers a solution for evenly distributing
points on a sphere. We chose this method to obtain the starting coordinates of virtal nodes for its
simplicity and efficiency.

G Initial experiment

Figure G1 shows the training curves for a VN-EGNN during the development phase. The model
was only trained to minimize the segmentation loss Lsegm. Even in the absence of a binding site
center loss Lbsc, the virtual nodes tend to converge towards the actual binding site center. This
finding inspired us to further refine the positions of the virtual nodes by including Lbsc directly in the
optimization objective, which further improved the results.

H Visualizations

Figure H1, shows our model predictions visualized with Pymol.
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Figure G1: Training curves of a VN-EGNN during development. The model was trained only using
segmentation loss, i.e. Dice loss. Left: Learning curve depicting the segmentation loss during
training. Right: Learning curve depicting the positional binding site center point loss, which was not
explicitly optimized for this experiment. Despite only being trained to minimize the segmentation
loss, the virtual nodes converged towards the known binding sites centers.

Figure H1: Examples of detected binding sites. Two different proteins visualized with Pymol, the
yellow points represent the initial positions of the virtual nodes, the turqoise points represent the
virtual nodes after L message passing steps. The green dot represents the true positions as it is in
the dataset. Because the dataset contains only one ligand also for symmetric proteins, we took the
original proteins from the PDB database. As our plots shows our model distributes the virtual nodes
among different ligands. To better see the different positions of the virtual nods we lowered the
opacity of the cartoon visualization type. Top:1odi. Bottom: 3lpk.
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