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Abstract

Antibody design is a time-consuming and expensive process that often requires1

extensive experimentation to identify the best candidates. To address this challenge,2

we propose an efficient and risk-aware antibody design framework that leverages3

protein language models (PLMs) and batch Bayesian optimization (BO). Our4

framework utilizes the generative power of protein language models to predict5

candidate sequences with higher naturalness and a Bayesian optimization algorithm6

to iteratively explore the sequence space and identify the most promising candidates.7

To further improve the efficiency of the search process, we introduce a risk-aware8

approach that balances exploration and exploitation by incorporating uncertainty9

estimates into the acquisition function of the Bayesian optimization algorithm.10

We demonstrate the effectiveness of our approach through experiments on several11

benchmark datasets, showing that our framework outperforms state-of-the-art12

methods in terms of both efficiency and quality of the designed sequences. Our13

framework has the potential to accelerate the discovery of new antibodies and14

reduce the cost and time required for antibody design.15

1 Introduction16

Antibodies, also known as immunoglobulins, are proteins produced by the immune system to17

recognize and neutralize foreign substances. They play a critical role in the body’s defence against18

infections and diseases (1). The variable regions of an antibody are responsible for antigen recognition,19

are highly diverse, and consist of three complementarity-determining regions (CDRs) named CDR1,20

CDR2, and CDR3. Among these CDRs, CDR3 exhibits the greatest variability and is often referred21

to as the “hypervariable” region (2). Efficient antibody design is becoming more and more important22

because it has the potential to accelerate the development of effective treatments and vaccines (3; 4).23

Throughout the antibody design process, we strive to harness the full potential of antibodies by24

tailoring their properties to meet specific requirements. By optimizing their affinity, stability, and25

other attributes, these designed antibodies offer promising prospects for targeted therapy, diagnostics,26

and various biomedical applications (5; 6).27

Typically, Experimental antibody design and screening can be time-consuming and expensive. Sim-28

ulation allows researchers to test a large number of potential antibody structure candidates and29

select the most promising candidates for further experimental validation, saving time and resources.30

Improving the process of simulations (7) can further provide insight into the properties and behaviour31
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of antibodies, such as binding affinity and specificity, which may be difficult to determine experi-32

mentally (8; 9). However, the sheer number of possible CDRH3 sequences in a combinatorial space33

makes it infeasible to exhaustively examine any antibody simulation framework (10). Therefore, we34

need computational tools to guide our exploration of the protein landscape35

Recently, Bayesian optimization has demonstrated its efficiency in exploring the sequence design36

space (8; 11). Bellamy et al (12) compared how noise affects different batched Bayesian optimization37

techniques and introduced a retest policy to mitigate the effect of noise. Wang et al (13) discussed38

using Bayesian optimization (BO) to design chemical-based products and functional materials,39

showing that BO can significantly reduce the number of experiments required compared to traditional40

approaches. However, for antibody sequence design where the search space dimension is extremely41

large, it is very ineffective for Bayesian optimization. The choice of the acquisition function used to42

guide the optimization process can also impact its effectiveness, and there may be a trade-off between43

exploration and exploitation that must be carefully balanced.44

We propose GLMAb-BO, an efficient way for antibody sequence optimization to address the above45

challenges. Our main contributions are improving exploration efficiency by using protein language46

models to filter out mutants with low fitness scores and designing a risk-aware acquisition function47

based on the uncertainty of the prediction to improve the explorer’s ability. We demonstrate the48

effectiveness of our proposed method on multiple antibody datasets. Our model can identify the49

sequence with the best fitness score in the fewest rounds compared to other baselines.50

2 Related work51

Specially, we can use fitness scores to evaluate the bio function of the sequence, which play a52

crucial role in antibody design as they serve as important indicators of the functional and structural53

quality of antibodies. Higher fitness scores generally indicate better binding affinity, stability, and54

other desirable properties. Many novel frameworks have been proposed to model various protein55

sequences. Especially for pre-trained language models which demonstrate transfer learning ability56

to predict fitness scores (14; 15). In the context of antibody design, predicting fitness scores can57

be highly beneficial. It provides a cost-effective alternative to conducting time-consuming and58

expensive wet-lab experiments. By utilizing computational models and machine learning techniques,59

researchers can efficiently evaluate the fitness of a large number of antibody sequences, prioritizing60

those with higher predicted fitness scores for further experimental validation. The need for better61

exploration algorithms, such as batch Bayesian optimization (BO), has gained attention in addressing62

the challenges of sequence design. Belanger et al (16) explored the application of batched Bayesian63

optimization in the context of biological sequence design, addressing the unique challenges and64

investigating design choices for robust and scalable design. Furthermore, Gonzalez et al (17)65

proposed a heuristic method based on an estimate of the function’s Lipschitz constant to capture the66

interaction between evaluations in a batch. A penalized acquisition function is used to collect batches67

of points, minimizing non-parallelizable computational effort. Khan et al (8) used a CDRH3 trust68

region to restrict the search to sequences with favourable developability scores.69

These studies highlight the ongoing efforts to address the challenges in sequence design for antibody70

engineering. By incorporating bayesian optimization, researchers aim to enhance the efficiency and71

effectiveness of antibody design and improve the sequence diversity.72

3 Problem Formulation and Background73

3.1 Antibody Sequence Design74

Antibody Sequence Design can be formulated as a constrained optimization problem (18; 19; 8; 20).75

Let x be a vector representing the CDRH3 amino acid sequence, and let f(x) be a fitness function that76

quantifies the quality of the antibody sequence in terms of target specificity and developability. The77

problem is to find the optimal sequence x∗ that maximizes the scoring function subject to constraints:78
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max
x

f(x) s.t.x ∈ X , g(x) ≤ 0, (1)

where X is the set of all possible amino acid sequences for the CDRH3 region and g(x) represents79

constraints on the biophysical properties of the sequence, such as stability and solubility. The80

optimization problem aims to find the best antibody sequence that satisfies the biophysical constraints81

and has the highest target specificity and developability scores. Bayesian optimization methods can be82

used to efficiently solve this optimization problem by iteratively proposing candidate sequences that83

are subsequently evaluated by a surrogate model and passed to an acquisition function that balances84

exploration and exploitation.85

3.2 Bayesian optimization86

Bayesian Optimization (BO) is a sequential model-based optimization technique used to solve87

expensive black-box optimization problems with a limited budget of function evaluations, which has88

been applied to sequence modelling (8; 13).89

We can express the BO process as follows: Let f(x) be the unknown fitness function we aim to90

optimize, where x ∈ X is the input variable. Our goal is to find the global optimum x∗ that maximizes91

f(x). However, doing a wet lab experiment to evaluate f(x) is expensive and time-consuming. The92

acquisition function, denoted by α(x), measures the utility of evaluating a point x based on the93

current surrogate model. α(x) balances exploration and exploitation by favouring points with high94

uncertainty (exploration) or high expected improvement (exploitation). Popular acquisition functions95

include expected improvement (EI), upper confidence bound (UCB), and probability of improvement96

(PI) (21; 8).97

The next evaluation point is selected by optimizing the acquisition function over the input space X :98

xn+1 = argmaxx∈Xα(x) (2)

After evaluating f(xn+1), we update the surrogate model with the new observation (xn+1, yn+1)99

and repeat the process until the budget of function evaluations is exhausted or a satisfactory solution100

is found. Batch BO improves this by minimizing the exploration rounds.101

4 Method102

4.1 General language model guided candidate pool generation103

Intuitively, we propose to use the General language model (GLM) trained on diverse antibody datasets104

to score the candidate pool and filter out the sequence with lower fitness values in the vast sequence105

space. Let C be the candidate pool consisting of N protein sequences, and let f(xi) be the fitness106

score of sequence xi from candidate pool C obtained from the protein language model. We determine107

the threshold fitness score t that filters out m% of the sequences with fitness scores less than or equal108

to t. In the process of training our protein model GLM-Ab, we randomly mask one or two of the109

CDR regions by replacing the entire region with a random mask. We also conduct random mask110

fragments, by randomly masking one or more sections of the sequence.111

Then, we can use GLM-Ab to score the sequences and determine an index k such that f(xk) ≤ t <112

f(xk−1). Furthermore, by setting t = f(xk), the filtered set of sequences C′ with small search space113

and higher naturalness is obtained as:114

C′ = xi ∈ C | f(xi) ≥ t (3)

In other words, C′ contains all sequences in C with fitness scores greater than or equal to t based on115

GLM scoring.116
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4.2 Risk aware Bayesian optimization117

Many previous works have been proposed to leverage uncertainty for biological discovery and118

sequence design (22; 21; 8). However, using gaussian processes (22) to measure the uncertainty for a119

large sequence is extremely inefficient. In this section, we propose a risk-aware exploration to balance120

exploration and exploitation by selecting points with high expected improvement and lower risk. In121

each round of optimization, we train an ensemble of models to estimate the uncertainty, similar to the122

approach taken by PEX (20).123

We assume the output of M surrogate models follows a normal distribution N (µs, σs). We can divide124

the uncertainty of those model predictions as epistemic uncertainty (EU) and aleatoric uncertainty125

(AU) (23; 24),126

σ2
e =

1

M

∑
(µ− µs)

2, σ2
a =

1

M

∑
s

σ2
s(x) (4)

where EU is based on the variance between the predictions of different surrogate models, and the127

AU-estimated standard deviation provides a measure of the uncertainty associated with the predicted128

values. EU quantifies the uncertainty associated with the lack of knowledge or variability in the129

models themselves. EU can be reduced by increasing the number or quality of models.130

Unlike PEX, we use a UCB acquisition function to evaluate sequence x. The UCB acquisition131

function is defined as:132

α(x) = µ(x) + βσ(x), (5)

where µ(x) is the mean ensemble prediction generates from surrogate models for a sequence x, and133

β is a hyperparameter that controls the trade-off between exploration and exploitation, and σ(x) is134

the ensemble standard deviation function of the surrogate model for sequence x. In other words, σ(x)135

represents the aleatoric uncertainty of the prediction for sequence x.136

The risk-aware modification based on Equation 5 introduces a penalty term that depends on the137

aleatoric uncertainty of the fitness values in the candidate pool:138

αrisk(x) = µ(x) +
β

m+ risk
σ(x) (6)

where risk is the parameter that measures the variability, i.e., epistemic uncertainty, of the fitness139

values prediction based on the surrogate model for the whole candidate pool. we select m = 0.5 is a140

constant to avoid dividing by a very small value. The general purpose of this acquisition function is to141

discourage the selection of points with high variability, which can lead to unstable and unpredictable142

performance. To be more specific, the measure for risk is defined as:143

risk =
1

|C|

|C|∑
i=1

σi (7)

It is calculated as the average of aleatoric uncertainty for the fitness values evaluation in the whole144

generated candidate pool, where C ′ is the filtered candidate pool, and σi is the standard deviation of145

the fitness values prediction for the ith candidate sequence.146

In each round, we train the surrogate model fθ on the queried sequences with true fitness scores147

from wet lab experiments (same as (20)). In the first few rounds, the surrogate model lacks good148

prediction ability for the candidate pool and could have a higher epistemic uncertainty (23). The149

rationale for the risk measure is to consider epistemic uncertainty for the whole candidate pool, which150

indicates a high risk of selecting a suboptimal point that may lead to a performance drop.151
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Algorithm 1 Risk-aware Bayesian Sequence optimization
Input: Starting sequence (swt, f(swt)), Pre-trained protein language model G, surrogate model fθ,
measured buffer D, whole candidate pool C
Parameter: Initialize model parameter θ

1: for t = 1 to T do
2: while condition do
3: Use Equation 3 to generate filtered sequence pool C′ with higher naturalness.
4: Train ensemble of surrogate models fθ to get prediction µ and uncertainty σ, and risk.
5: Use the acquisition function based on Equation 6 scoring C′ to generate query sequence

batch Dquery
t .

6: Measure ground-truth fitness of Dquery
t by wet-lab experiments.

7: Update Surrogate model fθ using Dquery
t .

8: end while
9: end for

4.3 GLMAb-BO152

The full algorithm of our proposed algorithm can be found in Algorithm 1. In each round of black-box153

optimization, the whole framework is required to generate a query batch based on the measured154

fitness score through wet lab experiments. We first utilize the pre trained unsupervised GLM-Ab155

model to narrow down the candidate pool sequence space. Then, we integrate risk-aware batch156

Bayesian optimization to propose a query batch for web lab experiments. The visualization of the157

whole framework is in Figure 1.158

Figure 1: Framework overview. In our proposed GLMAb-BO framework, we first use the pre-trained
GLM-Ab model G to filter out the sequence with unsatisfying naturalness in the candidate pool
and acquire D′, then we train an ensemble of surrogate models with GLM-Ab’s feature encoding
to predict the fitness the remaining sequences. When we acquire the ensemble mean µ, prediction
standard deviation σ, and the risk, we utilize the proposed risk-aware Bayesian Optimization (BO)
acquisition function to further evaluate the sequences. Finally, we use the top 100 sequences with
high predicted naturalness to conduct a wet-lab experiment (we use a hypothetical scenario due to
time constraints for replacement in this study) and perform another round of exploration until we
reach the exploration rounds limits.

5 Experiments159

Absolut! framework (25) is used as a computational alternative to wet lab experiments for gener-160

ating antibody-antigen binding datasets. It provides a deterministic simulation of binding affinity161
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using coarse-grained lattice representations of proteins, allowing evaluation of all possible binding162

conformations between a CDRH3 sequence and an antigen. The framework has been benchmarked163

and shown to produce consistent results compared to experimental data (8; 26). And we use this164

framework to generate the initial whole candidate pool.165

5.1 Baseline methods166

In this study, several methods for antibody design optimization are compared. The Combinatorial167

Bayesian Optimization for Antibody Design (antbo) (8) approach employs combinatorial Bayesian168

optimization to efficiently design antibody CDRH3 regions, using a trust region and a black-box169

oracle for scoring specificity and affinity. Proximal Exploration (pex) (20) introduces the Proximal170

Exploration algorithm and the Mutation Factorization Network architecture, which prioritize high-171

fitness mutants with low mutation counts for protein sequence design. The Batch Bayes Optimization172

(batchbo) (16) method uses a neural network ensemble with uncertainty estimates to guide sequence173

batch selection using expected improvement. Random Search is employed as a baseline for method174

comparison, randomly selecting subsets of sequences for reference. These diverse methods provide175

insights into the optimization landscape and guide the development of more advanced algorithms for176

protein sequence design.177

Figure 2: Experimental results comparison on antibody datasets, each round of black-box optimization
can generate 100 proposal sequences. We use maximum measured fitness in each round as the
evaluation metric. The shaded area indicates the standard deviation given 5 random seeds.
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Table 1: Comparison of sequence optimization results on different datasets, we summarized maximum
fitness over 5 rounds, 10 rounds, and average maximum fitness over 10 rounds

Method 1JHL_A 1ADQ_A 1FNS_A 1PKQ_J 1RJL_C 1TQB_A 1UJ3_C 2R29_A 2R56_A 2UZI_R 2VXQ_A 2W9E_A overall
antbo (10) 100.18 102.76 123.32 109.86 94.64 119.84 112.26 102.34 104.69 117.17 97.01 102.62 107.22
pex (10) 100.18 104.75 127.91 108.79 96.47 118.98 112.89 101.11 103.97 114.54 98.77 104.37 107.73

random (10) 95.49 99.65 120.64 106.83 92.05 116.79 105.26 99.37 99.06 111.91 93.21 99.04 103.28
batchbo (10) 100.18 105.76 128.97 109.69 95.48 120.84 112.67 103.50 104.69 117.38 98.77 105.34 108.61

GLMAb-BO (10) 100.18 105.76 129.78 110.70 95.95 120.84 112.89 103.50 104.69 117.38 98.77 105.34 108.82
antbo (5) 94.07 98.38 120.23 98.71 88.49 111.09 100.50 95.19 97.29 106.22 91.32 98.32 99.98
pex (5) 97.36 100.36 121.45 106.87 87.86 113.09 110.23 93.60 94.11 104.87 94.34 98.77 101.91

random (5) 93.25 99.65 120.17 102.91 89.80 109.00 100.73 95.27 96.14 105.82 92.46 96.78 100.16
batchbo (5) 98.34 102.36 121.20 103.68 89.12 114.39 108.84 98.66 97.86 107.60 94.63 99.63 103.03

GLMAb-BO (5) 97.34 103.84 122.07 106.93 91.21 114.19 108.52 99.30 100.76 110.77 98.77 103.73 104.79
antbo (avg) 95.37 99.13 119.18 104.35 90.21 112.91 104.51 97.64 99.17 110.39 92.89 98.62 102.03
pex (avg) 96.21 100.64 121.84 104.89 90.73 114.14 108.22 96.21 96.18 109.51 94.74 100.51 102.82

random (avg) 92.00 97.40 117.36 102.86 88.95 110.34 101.26 95.15 95.29 106.08 90.63 96.43 99.48
batchbo (avg) 96.30 101.69 122.79 104.92 90.68 115.88 107.83 98.31 98.82 111.30 95.21 101.34 103.76

GLMAb-BO (avg) 96.83 102.25 123.63 106.40 92.19 115.86 108.50 99.30 100.60 112.38 95.63 102.37 104.66

Figure 3: Ablative study experimental results comparison on antibody datasets with 5 random seeds.

Table 2: Ablation results on different datasets,we summarized maximum fitness over 5 rounds, 10
rounds, and average maximum fitness over 10 rounds.

Method 1JHL_A 1ADQ_A 1FNS_A 1PKQ_J 1RJL_C 1TQB_A 1UJ3_C 2R29_A 2R56_A 2UZI_R 2VXQ_A 2W9E_A overall
GLMAb(w/o emb)-BO (10) 100.18 105.76 128.78 109.66 96.01 120.84 112.89 103.50 104.69 117.38 98.77 105.34 108.65

GLMAb-random (10) 95.78 102.01 123.56 105.67 93.92 117.82 110.10 100.85 101.15 113.15 95.61 101.74 105.11
Antiberty-BO (10) 100.18 105.34 128.97 109.64 95.48 120.83 110.94 103.50 100.88 117.38 98.77 105.34 108.10
GLMAb-select (10) 100.12 105.76 128.57 109.47 95.34 120.84 110.05 102.99 102.06 116.48 98.11 104.21 107.83
GLMAb-BO (10) 100.18 105.76 129.78 110.70 95.95 120.84 112.89 103.50 104.69 117.38 98.77 105.34 108.82

GLMAb(w/o emb)-BO (5) 98.11 104.45 120.94 104.34 92.43 118.78 107.23 100.91 94.93 107.81 92.06 100.50 103.54
GLMAb-random (5) 93.09 97.70 119.98 102.44 89.32 113.06 103.08 97.80 97.91 110.96 95.38 101.13 101.82

Antiberty-BO (5) 95.60 100.51 123.69 99.35 92.23 115.20 104.25 97.80 97.89 104.40 94.56 98.58 102.00
GLMAb-select (5) 97.45 100.89 122.53 105.18 93.84 112.97 109.71 99.84 100.49 108.74 96.87 103.37 104.32
GLMAb-BO (5) 97.34 103.84 122.07 106.93 91.21 114.19 108.52 99.30 100.76 110.77 98.77 103.73 104.79

GLMAb(w/o emb)-BO (avg) 96.59 102.12 123.06 105.24 92.23 116.72 107.78 99.73 99.30 111.74 94.66 101.62 104.23
GLMAb-random (avg) 92.49 97.39 118.25 101.34 89.57 111.92 105.60 97.08 96.15 109.21 93.13 98.94 100.92

Antiberty-BO (avg) 95.15 101.67 122.28 104.15 92.12 115.61 104.36 98.55 97.05 111.15 95.21 101.27 103.21
GLMAb-select (avg) 96.05 101.63 122.45 103.68 92.01 115.65 106.40 98.29 98.53 110.97 94.58 101.05 103.44
GLMAb-BO (avg) 96.83 102.25 123.63 106.40 92.19 115.86 108.50 99.30 100.60 112.38 95.63 102.37 104.66
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5.2 Ablative study methods178

In the ablative study, we assess the effectiveness of our proposed enhancements in the GLMAb-179

BO method through various ablations. These include GLMAb-score, which focuses solely on the180

highest predicted score from GLMAb on the candidate pool, and GLMAb-select, which removes the181

acquisition function and relies solely on the surrogate model for sequence selection. Additionally,182

GLMAb-random eliminates both the acquisition function and surrogate model, utilizing the GLM183

model to filter sequences and then randomly selecting the top 100. GLMAb(w/o emb)-BO removes184

the embedding of GLMAB’s CNN surrogate model to evaluate the feature embedding module.185

Moreover, the Antiberty-BO model replaces the GLM module with a different antibody-specific186

transformer language model to gauge its impact on active learning efficiency.187

5.3 Result analysis188

5.3.1 Analysis of GLMAb-BO performance189

The comparison results of different methods are presented in Figure 2 and Table 1, highlighting190

notable findings. Firstly, batch-mode optimization methods (such as PEX and BatchBO) outperform191

non-batch-mode methods (like AntBO) in terms of discovering sequences with higher fitness scores.192

This advantage stems from the inherent diversity introduced by considering multiple sequences193

simultaneously in batch mode optimization. In contrast, non-batch mode methods are more susceptible194

to being trapped in local optima due to their limited diversity. Additionally, the utilization of GLMAb195

to filter the extensive sequence optimization space facilitates the exploration process, enabling the196

identification of optimal sequences within a few rounds. Moreover, leveraging feature embedding197

pretrained from the GLMAb model enhances the performance of the surrogate model in predicting198

fitness scores for unknown sequences, even with limited training data.199

5.3.2 Analysis of submodule performance200

For the second question, the comparison results with different ablative methods are shown in Figure201

2 and detailed in Table 2. We find GLMAb-BO to perform better than Antiberty-BO in the first few202

rounds, which indicates our pretrained GLMAb model’s ability to filter out more sequences with203

unsatisfying naturalness. Meanwhile, we can find that with the help of the embedding feature from204

GLMAb, the performance of GLMAb-BO is better than GLMAb(w/o emb)-BO on most datasets.205

By comparing GLMAb-BO with GLMAb-select and GLMAb-random, we can find that they have206

similar performance in the first few rounds thanks to the pre-trained GLM. However, given more207

rounds, GLMAb-BO can find the sequence with the overall best fitness score which indicates that208

our whole exploration framework can be helpful for exploring sequences with better naturalness. By209

comparing only GLMAb-select and GLMAb-random, we can find that with the help of the trained210

surrogate model, it can also greedily improve the searched sequence naturalness since it could have211

overall better fitness in the last few rounds.212

6 Conclusion213

In conclusion, we have presented an efficient and risk-aware antibody design framework that combines214

the power of protein language models and batch Bayesian optimization. Our approach addresses215

the challenges of time-consuming and expensive experimentation by leveraging predictive models216

to generate candidate sequences with higher naturalness and employing Bayesian optimization to217

explore the sequence space effectively. By incorporating uncertainty estimates into the acquisition218

function, our framework achieves a balance between exploration and exploitation, resulting in the219

identification of promising antibody candidates. Through extensive experiments on benchmark220

datasets, we have demonstrated the effectiveness of our method. Our framework surpasses state-of-221

the-art approaches in terms of both efficiency and the quality of designed sequences. By reducing the222

cost and time required for antibody design, our framework has the potential to expedite the discovery223

of new antibodies and contribute to advancements in the field.224
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[26] C. Kanduri, M. Pavlović, L. Scheffer, K. Motwani, M. Chernigovskaya, V. Greiff, and G. K. Sandve,290

“Profiling the baseline performance and limits of machine learning models for adaptive immune receptor291

repertoire classification,” GigaScience, vol. 11, 2022.292

[27] Z. Du, Y. Qian, X. Liu, M. Ding, J. Qiu, Z. Yang, and J. Tang, “Glm: General language model pretraining293

with autoregressive blank infilling,” in Proceedings of the 60th Annual Meeting of the Association for294

Computational Linguistics (Volume 1: Long Papers), 2022, pp. 320–335.295

[28] A. Kovaltsuk, J. Leem, S. Kelm, J. Snowden, C. M. Deane, and K. Krawczyk, “Observed antibody space: a296

resource for data mining next-generation sequencing of antibody repertoires,” The Journal of Immunology,297

vol. 201, no. 8, pp. 2502–2509, 2018.298

[29] E. Nijkamp, J. Ruffolo, E. N. Weinstein, N. Naik, and A. Madani, “Progen2: exploring the boundaries of299

protein language models,” arXiv preprint arXiv:2206.13517, 2022.300

[30] S. Bachas, G. Rakocevic, D. Spencer, A. V. Sastry, R. Haile, J. M. Sutton, G. Kasun, A. Stachyra, J. M.301

Gutierrez, E. Yassine et al., “Antibody optimization enabled by artificial intelligence predictions of binding302

affinity and naturalness,” bioRxiv, pp. 2022–08, 2022.303

[31] D. Hesslow, N. Zanichelli, P. Notin, I. Poli, and D. Marks, “Rita: a study on scaling up generative protein304

sequence models,” arXiv preprint arXiv:2205.05789, 2022.305

[32] B. Chen, X. Cheng, Y.-a. Geng, S. Li, X. Zeng, B. Wang, J. Gong, C. Liu, A. Zeng, Y. Dong et al.,306

“xtrimopglm: Unified 100b-scale pre-trained transformer for deciphering the language of protein,” bioRxiv,307

pp. 2023–07, 2023.308

[33] S. Sinai, R. Wang, A. Whatley, S. Slocum, E. Locane, and E. D. Kelsic, “Adalead: A simple and robust309

adaptive greedy search algorithm for sequence design,” arXiv preprint arXiv:2010.02141, 2020.310

[34] J. A. Ruffolo, J. J. Gray, and J. Sulam, “Deciphering antibody affinity maturation with language models311

and weakly supervised learning,” arXiv preprint arXiv:2112.07782, 2021.312

10



Appendix313

Training of protein language model314

Since pretraining General language models (GLM) (27) pretrained on natural languages have achieved noteworthy315

performance, we leveraged the GLM framework to train a language model of antibodies with 1 billion parameters316

(GLM-Ab). Specifically, GLM-Ab is trained on both the understanding (in-place token prediction) and the317

generation (next token prediction) tasks, which contain a blank filling task, a recovering random masked span318

task and a recovering CDR deleted region task. The model is trained on Observed Antibody Space (28) with319

a max length of 1024, 230K steps, and 2048 samples per batch. Other hyperparameters are the same with the320

official implementation of GLM (27).321

Following (29; 30; 31), we utilize the perplexity (PPL) given by a protein language model to predict the fitness322

of proteins. The main training scheme and hyper-parameters are following (32).323

Correlation evaluation of protein language model with the CDR3 antibody candidate pool324

To shed light on the relevance of the pre-filtering with our pre-trained protein language model. We plot the325

correlation between the predicted value and ground truth value on the candidate pool datasets using different326

protein language models. As demonstrated from Figure 4 and 5, we can find that our pre-trained GLM-Ab can327

have a better correlation than Antiberty, which makes it becomes more useful for pre-filtering out the sequence328

with low naturalness. However, we still find that the correlation is not quite high even lower than 0.5 which can329

validate that the BO model for sequence exploration is very necessary.330

Figure 4: Correlation analysis between GLM-Ab and the candidate pool.

Figure 5: Correlation analysis between Antiberty and the candidate pool.
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Training of surrogate model331

Constructing a surrogate model to facilitate the selection of mutants in in-silico evolutionary processes is an332

effective approach to mitigate the resource-intensive nature of wet-lab experiments. This involves training333

a fitness model denoted as f̂θ, where θ represents the model’s parameters, to predict the fitness of mutant334

sequences. Specifically, the surrogate model is optimized by minimizing the regression loss function L(θ) =335

Es ∼ D

[(
f̂θ(s)− f(s)

)2
]

, where D signifies a dataset containing experimentally measured sequences. The336

acquired surrogate model f̂θ becomes capable of predicting the fitness of previously unseen sequences, thereby337

guiding in-silico sequence exploration and enhancing the efficiency of directed evolution while reducing the338

need for extensive experimental efforts. Built upon the above trained GLM-Ab model’s embedding, we add 6339

layers of CNN module which is adapted from (33).340

Baseline methods setup341

• Combinatorial Bayesian Optimisation for Antibody Design (antbo): (author?) (8) introduced a342

combinatorial Bayesian optimization framework for efficient in silico design of the CDRH3 region343

of antibodies. They used a CDRH3 trust region to restrict the search to sequences with favorable344

developability scores and a black-box oracle to score target specificity and affinity. However, it could345

only propose one sequence in each round of optimization. We adapt this method to propose 100346

sequences to make a fair comparison.347

• Proximal Exploration(pex): (author?) (20) proposed the Proximal Exploration (PEX) algorithm and348

the Mutation Factorization Network (MuFacNet) architecture for machine learning-guided protein349

sequence design. The PEX algorithm prioritizes the search for high-fitness mutants with low mutation350

counts, leveraging the natural property of the protein fitness landscape that a concise set of mutations351

upon the wild-type sequence are usually sufficient to enhance the desired function. The MuFacNet352

architecture is designed to predict low-order mutational effects, improving the sample efficiency of353

model-guided evolution.354

• Batch Bayes Optimization (batchbo): We follow the idea from (16), and we apply the neural355

network ensemble with uncertainty estimate on the batch of sequence and use expected improvement356

as the acquisition function.357

• Random Search: This method involves randomly selecting a subset of sequences from a larger358

pool, with the goal of establishing a reference point against which the performance of other methods359

can be compared. While this approach is simple, it can be useful for identifying cases where more360

sophisticated algorithms may be necessary. However, the quality of the baseline can be highly361

dependent on the selection method and the size of the subset. Therefore, care must be taken in the362

selection process to ensure that the resulting subset is representative of the larger pool of sequences.363

Overall, random selection can provide a valuable starting point for evaluating the performance of more364

advanced algorithms in a variety of bioinformatics applications.365

Ablative study methods setup366

For the ablative study, we aim to evaluate the effectiveness of our proposed improvements. We construct several367

ablative versions based on our proposed GLMAb-BO method. We construct the following baselines:368

• GLMAb-score: for this method, we only report the highest predicted score generated by GLMAb on369

our raw candidate pool D.370

• GLMAb-select: for this model, we eliminate the acquisition function, i.e., the evaluation function371

from Equation 6. And we only use the surrogate model to select the top sequence for the query.372

• GLMAb-random: for this model, we eliminate both the acquisition function, i.e., the evaluation373

function from Equation 6 and the surrogate model. We only use the GLM model to filter out the374

sequence with worse scores. Then, we use a random method to select the top 100 query sequences.375

• GLMAb(w/o emb)-BO: for this model, we only eliminate the GLMAB’s embedding on top of the376

CNN surrogate model to test the effectiveness of the feature embedding module.377

• Antiberty-BO: To evaluate the effectiveness of our proposed method’s GLM module for active378

learning, we also tried another antibody-specific transformer language model (34) to replace the GLM379

module used before.380

The detailed ablative methods’ configuration summarization is summarized in Table 3.381
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Table 3: Comparison of the configuration of different ablation study methods
Method PLM Surrogate

model
Acquisition
function

GLMAb-
score

GLMAb × ×

GLMAb-
random

GLMAb × random

GLMAb-
select

GLMAb GLMAb
emb+CNN

×

GLMAb(w/o
emb)-BO

GLMAb CNN BO

Antiberty-
BO

Antiberty Antiberty
emb+CNN

BO

GLMAb-
BO (full
model)

GLMAb GLMAb
emb+CNN

BO
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