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Abstract

Reinforcement learning has proven useful for de novo molecular design. Leveraging
a reward function associated with a given design task allows for efficiently exploring
the chemical space, thus producing relevant candidates. Nevertheless, while tasks
involving optimization of drug-likeness properties such as LogP or molecular
weight do enjoy a tractable and cheap-to-evaluate reward definition, more realistic
objectives such as bioactivity or binding affinity do not. For such tasks, the ground
truth reward is prohibitively expensive to compute and cannot be done inside a
molecule generation loop, thus it is usually taken as the output of a statistical
model. Such a model will act as a faulty reward signal when taken out-of-training
distribution, which typically happens when exploring the chemical space, thus
leading to molecules judged promising by the system, but which do not align with
reality. We investigate this alignment problem through the lens of Human-In-The-
Loop ML and propose a combination of two reward models independently trained
on experimental data and expert feedback, with a gating process that decides which
model output will be used as a reward for a given candidate. This combined
system can be fine-tuned as expert feedback is acquired throughout the molecular
design process, using several active learning criteria that we evaluate. In this
active learning regime, our combined model demonstrates an improvement over
the vanilla setting, even for noisy expert feedback.

1 Introduction

De novo drug design aims at identifying novel compounds that achieve a high level of desirability
concerning given properties. Recent advances in deep generative modeling have caused a surge in
research around this field, with the promise to reduce both experimental costs and time spent searching
for relevant candidates. In that respect, several molecular generation methods were developed, either
based on zero-shot generation (Gómez-Bombarelli et al., 2018; Jin et al., 2018; Verma et al., 2022;
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Maus et al., 2022), or using autoregressive generation processes guided by a policy acquired through
Reinforcement Learning (Olivecrona et al., 2017; Svensson et al., 2023; Jain et al., 2023).

These tools have achieved promising results on toy benchmarks such as the generation of novel
compounds maximizing drug-likeness properties, but fall short on more concrete and specific exam-
ples such as discovering bioactive molecules for a given therapeutic target. Except for the intrinsic
difficulty of real-world optimization tasks, the main issue lies in the unavailability of ground truth
labels for newly generated molecules. This means that a proxy reward has to be used. Typically,
practitioners resort to a statistical model as a substitute, trained using a labeled dataset that only
accounts for a microscopic fraction of the whole chemical space, the latter ranging from 1020 to
1060 entities (Polishchuk et al., 2013). As more diverse candidates are being explored, a significant
covariate shift occurs between molecules seen at training time and those generated. Therefore, the
reward predicted for generated molecules inevitably departs from the ground truth reward, causing
the system to flag as promising molecules that are not (Renz et al., 2019; Gendreau et al., 2023).
This issue, also known as reward hacking (Skalse et al., 2022), is illustrated in Figure 1 using
Reinvent (Olivecrona et al., 2017), an autoregressive molecular generation method. From there, it
can clearly be established that even if the mean proxy reward for a random subset sampled from the
learned policy keeps increasing throughout generation cycles, the ground truth or oracle reward for
candidates predicted as most promising actually decreases.

To tackle this issue, recent approaches operate in a probabilistic framework but cast inference in
function space rather than parameter space for improved uncertainty quantification and a more
semantically meaningful way to specify knowledge of preferred parametric function mappings on
unlabelled data points (Klarner et al., 2023). This allows for encouraging high predictive uncertainty
in unexplored regions of chemical space or specifying prior knowledge about synthetic accessibility.

In this short communication, we take another route and propose to leverage expert feedback on the
generated molecules to increasingly align the proxy reward model with the ground truth as more train-
ing samples are being acquired. Such an approach is motivated by the recent successful application
of Human-In-The-Loop Machine Learning in goal-oriented molecular generation problems (Sundin
et al., 2022). The study demonstrated that a proxy reward model for bioactive molecules against
the dopamine receptor D2 (DRD2) could be learned from human feedback. The latter took the
form of a categorical score capturing whether the expert liked or disliked a candidate molecule
generated. Furthermore, the learned model aligned well with an oracle. Human expertise was also
found to compare favorably with statistical models for predicting other molecular properties such as
solubility (Boobier et al., 2017).

Based on typical practitioner needs, we outline three scenarios where expert feedback can play a
crucial role in learning a reward model. The first scenario involves an expert who understands the
design goal but lacks access to a predefined reward function. In this case, the reward is learned
directly from the expert’s observations, and the generative agent aims to emulate the expert’s behavior
to achieve their goal. The second scenario pertains to situations where the expert is aware of the
design goal and has access to a predefined reward function, often derived from experimental data.
Here, the generative model can be trained independently, with the expert supervising the learning
process to ensure correct behavior. Finally, the third scenario encompasses cases where the expert’s
knowledge of the goal is partial but can complement a proxy reward model derived from experimental
data. This scenario arises in contexts where the goal is to design specific compounds, guided by both
data-driven models and the expert’s unique insights, with the ultimate aim of generating suitable
molecules for the target of interest.

We consider the third scenario as it is the most frequent one that practitioners may encounter. To
approach it, we draw inspiration from the Learning To Defer (L2D) literature (Mozannar et al., 2023)
that aims at training a classifier able to defer its prediction to a human expert when needed. We
design the reward as a combination of models trained on both experimental and expert data and use it
to guide the molecular generation cycle. Moreover, we consider iterative fine-tuning of this combined
model using several active learning strategies to improve its predictions for the most promising
candidates discovered during the generation process. We evaluate our approach for the task of finding
bioactive candidates against DRD2 and demonstrate that in an active learning setting, our combined
model provides a consistent improvement over the vanilla proxy reward model.
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Figure 1: The proxy reward perceived for molecules obtained across generation cycles does
not align with its ground truth value. Left: after every generation cycle, a mean reward score is
computed on a batch of M = 10000 molecules sampled from the optimized agent using the proxy
reward model. Right: mean reward score restricted to the 10% best candidates present among the
batch of M molecules according to the proxy reward model. Mean and standard deviation obtained
across 5 random seeds. For further details, see Section 3.

2 Method

We consider access to two distinct datasets Dy = {xi, yi}
ny

i=1 and Dh = {xj , hj}nh
j=ny+1, represent-

ing the molecules x ∈ X together with experimental labels y ∈ Y and human labels h ∈ Y available
at hand, with Y = {0, 1}.

2.1 Reward model building

We introduce two classifiers, sy and sh, trained on Dy and Dh, respectively. sy captures the decision
boundary learned based on experimental data while sh captures the one induced by human knowledge.
Each classifier is parameterized by a vector θl, l ∈ {y, h}, and outputs a probability pθl

(·). Next,
the combined probability vector [pθy (·), pθh

(·)] is fed to a final rejector classifier sr, parameterized
by θr, whose task is ultimately to select which of sy or sh will end up predicting a given sample,
effectively assessing whether we should rely on experimental or human knowledge. As such, sr also
outputs a probability pθr (·), and at training time, we compute the deferral indicator di ∈ {0, 1} for a
sample xi as

di := I
(
{pθr (xi) > pθy (xi)} ∩ {yi = 1} ∩ {pθy (xi) < pθh

(xi)}
)

+ I({pθr (xi) > pθy (xi)} ∩ {yi = 0} ∩ {pθy (xi) > pθh
(xi)}), (1)

with di = 1 for a prediction deferred to sh, to sy otherwise. In effect, we are ensuring that the
rejector has a higher score than the classifier trained on experimental data, and then, we ensure that
the confidence of the classifier sh trained on human data is higher than that of sy. Here, the notion
of confidence lies in the observation that for positive (resp. negative) labels, the output probability
should be as close to 1 (resp. 0) as possible. The probability score as given by the global system is
then

ki := dipθh
(xi) + (1− di)pθy (xi). (2)

Using the binary cross-entropy loss, our global loss function L amounts to:

L(θ) =α
∑

l∈{y,h}

nl∑
i=1

li log(pθl
(xi)) + (1− li) log(1− pθl

(xi))

+ (1− α)

ny∑
i=1

yi log(ki) + (1− yi) log(1− ki), (3)

where θ = [θy,θh,θr] and α ∈ [0, 1] is a hyperparameter balancing the importance of classifier
accuracies with respect to the system accuracy. In practice, α is acquired by grid-search on an inde-
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Figure 2: Overview of the sequential experimental design pipeline for goal-oriented molecule
generation. The generation loop with Reinvent is shown in light green, where a Recurrent Neural
Network pretrained on the ChEMBL database optimizes its policy to generate new molecules
maximizing a proxy reward. The sequential experimental design is shown in purple, where the proxy
reward model interacts with an expert via active query selection, collecting feedback about how much
do the currently generated molecules align with the intended goal and updating its scoring strategy
based on that feedback. One iteration of both loops constitute a molecule generation cycle. At the
end of each generation cycle, the final set of generated molecules is evaluated by an oracle.

pendent validation set. Note that Equation 3 depends on θr through di, involved in the computation
of ki.

Finally, during prediction time, an unseen sample x∗ is passed through both classifiers sy and sh, and
since we do not have access to the label required to compute the deferral indicator (Equation 1), the
event {y∗ = 1} (resp. {y∗ = 0}) is substituted by {pθy (x∗) > 0.5} (resp. {pθy (x∗) < 0.5}).

2.2 Sequential experimental design

Once the model has been trained using Dy and Dh, it can act as a reward for any conditional
molecular generation framework. This paper focuses on Reinvent (Olivecrona et al., 2017), a
sequential generation method built on a Recurrent Neural Network tuned with a pre-specified reward
function to guide chemical space exploration. Following (Sundin et al., 2022), we now describe
a sequential experimental design pipeline to further align the reward model with the ground truth
reward (Figure 2).

At generation cycle t, Reinvent generates a batch of M molecules, a subset of which is shown to a
human expert to acquire human data (x, h). These are then added to Dh, an d one can train again
the system (Equation 3) and obtain an updated reward model, which is then integrated back into
Reinvent. Among the M generated molecules every iteration, the precise subset of m molecules
shown to the expert is determined using an active learning criterion. Some desirable active learning
objectives include querying the expert about the m most uncertain molecules, or the m most likely
bioactive molecules, or the m most likely to be deferred.
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Upon acquisition of expert labels h, an underlying assumption is that they align with ground truth
labels y that would have been obtained if actual biological assays were carried, so that the reward
model can align with the ground truth reward.

3 Experiments

3.1 Presentation of the task

We consider the task of generating novel molecules predicted to be active against the dopamine
receptor DRD2. The aim is to quantify the discrepancy in predicted reward for generated molecules
compared to the oracle reward, as the generation cycles go by. For our proposal to be successful,
the combined model should catch up with the oracle reward faster than the vanilla model based on
a single classifier. The training dataset for DRD2 bioactivity is taken as a subset of the Excape-db
database (Sun et al., 2017; Olivecrona et al., 2017).

3.2 Implementation details

For classifiers sy and sh, we implement Multi-Layer Perceptrons, with the last layer followed by a
sigmoid. The rejector sr is taken as a logistic regression model.

In an optimal setting, the oracle reward would give the ground truth label for any molecule. However,
ground truth labels, acquired from actual biological experiments, are only available for the training
set. Thus, we create an oracle baseline by considering a Support Vector Machine trained on 20000
labeled samples, whereas the proxy reward model that will be used for scoring the molecules in
Reinvent is only trained on 2400 labeled samples. For both proxy and oracle training, samples are
represented with Extended Connectivity Fingerprint 6 (ECFP6) vectors of size 2048. SVMs, Random
Forests or Boosting Trees were recently shown to better handle molecular fingerprint inputs than
Deep Learning models, hence their use as an oracle model is a relevant assumption (Xia et al., 2023).

Next, to a knowledgeable human expert on areas of the chemical space that differ from the experimen-
tal data, we draw inspiration from (Klarner et al., 2023) and split the dataset into two clusters obtained
using spectral clustering with a weighted affinity matrix corresponding to the pairwise Tanimoto
similarity between ECFP6. Non-overlapping clusters then enforce diversity in the knowledge that
can be gained from human or experimental data. Figure 3 confirms that the two clusters obtained are
indeed well-separated through a visualization produced by UMAP dimensionality reduction (McInnes
et al., 2018).
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Figure 3: UMAP 2D view of the spectral clustering.

During the generation process, we acquire expert labels h on the generated molecules. For repro-
ducibility purposes, we employ a synthetic expert using a Bernoulli model:

h ∼ yBernoulli(π) + (1− y)Bernoulli(1− π) (4)
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Where we recall that y is the ground truth bioactivity label for a molecule x. For the training set,
this corresponds to labels acquired through biological experiments, whereas for newly generated
molecules, the “ground truth” y is obtained from the oracle trained on a large number of samples. A
perfect expert is such that h = y, that is π is set to 1.

We assess the results for several active learning criteria that determine which molecules are presented
to the human expert for labeling every iteration: greedy sampling, uncertainty sampling, expected
predictive information gain (EPIG, Bickford Smith et al. (2023)), and random sampling. Detailed
expressions for each criterion can be found in Supplementary Section A.

3.3 Results

At test time, both the classifier and model of expert knowledge included in the combined model
have achieved high predictive performances, with F1-scores of 0.94 and 0.91 respectively on an
in-distribution holdout test set. The combined model has achieved an F1-score of 0.95 on the same
test set, with a percentage of deferral to the expert model of 27%. Most molecules being deferred were
found to belong to the non-bioactive class, with predicted probabilities of them being non-bioactive
by the expert model lower than that of the classifier, suggesting that the expert model is more reliable
for detecting the true negatives.

In Reinvent , we use both the combined model and vanilla model (involving only a classifier)
in separate trials as proxy reward models to guide the molecular generation towards DRD2 active
candidates. The oracle reward is only used for evaluating the generated molecules. We compare
generation results when using each of the reward models with and without active learning.
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Figure 4: Active learning jointly with a combined model yields increased oracle scores for
best-scoring candidates. Left: at the end of every generation cycle, M = 10000 molecules are
sampled from the optimized agent using the proxy reward model. The mean oracle bioactivity score
is computed. Right: Among the M generated molecules, a set composed of the 10% best candidates
according to each proxy model is obtained, over which the mean oracle score is computed. A
perfect expert is considered (π = 1), and the EPIG active learning strategy is employed.

Figure 4 reports the mean oracle reward scores computed across the molecular generation cycles
for two proxy reward models. The first only relies on a classifier (purple curve), and the second on
the combined model described above (blue curve). For dotted curves, active learning was carried
out between each generation cycle, leading to m = 50 molecules being shown to the expert using
the EPIG strategy every cycle. A perfect expert (π = 1) is assumed. The left panel of the figure
presents the scores obtained on a batch of M = 10000 molecules, while the right panel considers the
10% best molecules according to the proxy reward model. From Figure 4, the obtained scores for
the whole batch of 10000 molecules roughly look the same, whatever the model or active learning
strategy considered. Discrepancies appear when statistics are computed over the 1000 best candidates.
This number makes sense as it matches the order of magnitude of promising candidates sent for
further pre-screening in pharmacological trials. For the remainder of the results section, we therefore
focus on the top 1000 best candidates.
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While increased performances for baselines leveraging active learning can partially be explained
through the fact that these models were trained with a higher number of samples (m = 50 additional
samples every generation cycle except the last), both active learning baselines enjoy quite different
results towards the end, suggesting that the combined model benefits more from active queries.

This is further confirmed in Figure 5. The latter zooms in and considers the end of the optimization
(when the sixth molecular generation cycle is over). From the top panel, it can be observed that our
combined model benefits from active learning whatever the strategy employed. Quite surprisingly,
random querying achieves the best performance here, highlighting the difficulties of applying active
learning strategies in very high dimensional spaces (here, d = 2048). Next, for each model and
acquisition strategy, the lower panel shows the difference in the predicted bioactivity score versus
oracle score. The lower this quantity, the better the agreement between the proxy and oracle reward.
Our combined model demonstrates a closer agreement, except for the uncertainty strategy.

We then analyzed the deferral behavior of the combined model before and after using active learning
to fine-tune the expert model with additional expert feedback. When the combined model is not
updated, the percentage of deferrals for scoring the molecules decreases considerably, from 27% to
nearly 0%. Deferrals to the expert model are not useful with respect to the oracle (Figure S1a). As
the molecule generation process progresses, most generated molecules are deferred to the classifier
which predicts them as very promising but with higher disagreement with the oracle (Figure S1b).

After augmenting the combined model through active learning, deferrals became more useful,
showcasing the improvement of the expert model in identifying the good molecules with a better
alignment with the oracle (Figure S2a). Besides that, most molecules that were not deferred, thus
scored by the classifier, were also predicted active by the oracle with a better alignment between
the classifier and oracle scores. This suggests that the classifier predictions did also improve over
time (Figure S2b). This might be because, as more expert feedback is being acquired to fine-tune the
expert model, the generation evolved towards more relevant portions of the chemical space where
both the expert model and classifier can predict more accurately while the rejector adapts to leverage
the strengths of both expert model and classifier when scoring the molecules.
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Figure 5: The combined model provides increased oracle scores and better aligns with the oracle.
Top: at the end of the last generation cycle, M = 10000 molecules are sampled from the optimized
agent using the proxy reward model. The mean oracle bioactivity score for the 10% best candidates
from the batch is reported, according to each proxy model, and for each active learning criterion
employed. Bottom: for the same setting, the mean difference between proxy reward and oracle score
is reported. A perfect expert is considered (π = 1).
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Lastly, the impact of noisy human feedback on performances (π < 1, Equation 4) is studied. More
precisely, we consider π = 0.8 (Figure S3) π = 0.5 (Figure S4). The improvements demonstrated by
our approach earlier in the perfect expert setting transfer well to that of a noisy expert. It is also worth
noticing that for noisy experts, random exploration is no longer the best active learning criterion.
Full trajectories along molecular generation cycles for different levels of expertise and different
acquisition strategies can be found in Figure S5.

While the previous experiment considered a noisy human feedback, the initial human labels present
in Dh before the molecular generation cycle were assumed to be noise free, i.e. for any molecule
xj from the initial dataset, yj = hj . We now lift this assumption, thus better capturing the fact
that even for known compounds already belonging to standard molecular libraries, human-acquired
labels might not be accurate. The results are provided in Figure S6. Unsurprisingly, considering
noisy labels from the start negatively impacts the performances of both the vanilla classifier and the
combined model, and the benefits offered by the combined approach over the vanilla one are now
smaller. Interestingly, the performances reached by the combined model relying on a random expert
(π = 0.5, bottom) are higher to that building on a knowledgeable expert (π = 0.8, top). This might
stem from the fact that the combined system trained with π = 0.5 quickly learns not to rely on the
expert, thus deferring less queries. In effect, this behavior leads to a combined system reverting back
to the vanilla classifier to counteract potential errors or inconsistencies in the predicted bioactivity
scores (Figure S7).

4 Conclusion

We presented a novel approach to fix proxy reward models used in goal-oriented molecular generation
by leveraging expert knowledge. In an experiment aiming to generate novel molecules predicted to be
active against the dopamine receptor DRD2, we showed improvements in the sense that our model led
to increased oracle scores compared to a vanilla reward. The results shown are promising although
remain preliminary as user studies involving real expert feedback need to be carried out in order to
assess the viability of our approach. For reproducibility purposes, we designed a pipeline with a
simulated expert that is used to acquire additional feedback and through which we take into account
potential noise in the feedback to account for the uncertainty inherent to realistic Human-In-The-Loop
scenarios.

From the methodological and modeling point of view, a number of steps could be undertaken to
improve upon the current proof of concept. While we have drawn inspiration from the Learning To
Defer paradigm (L2D, Mozannar et al. (2023)), we had to significantly depart from that setting. The
reason is that L2D assumes that the human expert is always available when the prediction is deferred.
This is only the case in the outer optimization loop of Reinvent , when already generated molecules
are shown to the experts. In the inner generation loop, thousands of molecules are being assessed and
so acquiring human labels for them is not an option. To circumvent this issue, we chose to integrate a
model of expert knowledge, which can be used in the inner generation loop of Reinvent. This being
said, integrating ideas of the L2D framework so that both classifiers sy and sh are fully aware of each
other and adapt their decision boundary in that respect would certainly improve results. The L2D
approach was also recently extended to the case of multiple experts (Verma et al., 2023), which might
represent an interesting avenue for work as well.

Finally, one might also consider other recently curated datasets on bioactivity such as the one recently
introduced by Klarner et al. (2023) on the discovery of chemoprotective antimalarial drug candidates.
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Figure S1: (a) Randomly sampled molecules that were deferred to the expert model when no active
learning was used for combined model fine-tuning. (b) Randomly sampled molecules that were
not deferred to the expert model, therefore scored by the classifier, when no active learning is used.
Corresponding scores from the combined model (used for optimization) and the oracle are shown
below.
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Figure S2: (a) Randomly sampled molecules that were deferred to the expert model when greedy
sampling was used to acquire additional expert feedback (π = 1).(b) Randomly sampled molecules
that were not deferred to the expert model, therefore scored by the classifier, when greedy sampling
was used to acquire additional expert feedback (π = 1). Corresponding scores from the fine-tuned
combined model (used for optimization) and the oracle are shown below.
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Figure S3: Results for a knowledgeable expert (π = 0.8). Top: at the end of the last generation cycle,
M = 10000 molecules are sampled from the optimized agent using the proxy reward model. The
mean oracle bioactivity score for the 10% best candidates from this batch is reported, according to
each proxy reward model, depending on which active learning criterion was employed. Bottom: for
the same setting, the mean difference between proxy reward and oracle score is reported.
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Figure S4: Results for a random expert with (π = 0.5). Top: at the end of the last generation cycle,
M = 10000 molecules are sampled from the optimized agent using the proxy reward model. The
mean oracle bioactivity score for the 10% best candidates from this batch is reported, according to
each proxy reward model, depending on which active learning criterion was employed. Bottom: for
the same setting, the mean difference between proxy reward and oracle score is reported.
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Figure S5: Mean oracle bioactivity score for both proxy reward models as a function of the level of
expertise (rows) and active learning strategy chosen (columns), for the 10% best scoring molecules.
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Figure S6: Results for a knowledgeable expert (π = 0.8, top) and a random expert (π = 0.5, bottom),
where both the initial labels and sequentially-queried labels are noisy. At the end of the last generation
cycle, M = 10000 molecules are sampled from the optimized agent using the proxy reward model.
The mean oracle bioactivity score for the 10% best candidates from this batch is reported, according
to each proxy reward model, depending on which active learning criterion was employed.
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Figure S7: Percentages of deferred bioactivity score predictions to the noisy expert model at the end
of the last generation cycle, where M = 10000 molecules are sampled from the optimized agent
using the proxy reward model. Mean and standard deviations are computed across 5 runs.

A Active learning criteria

We here provide a mathematical description of the active learning criteria employed throughout the
experiments. We consider a batch of Q unlabelled molecules X = {xq}Qq=1 and a trained predictive
model that outputs a score ŝ(·) ∈ [0, 1].

Greedy sampling.
xnext = argmax

x∈X
ŝ(x) (S1)

Random sampling.
xnext ∼ U(X) (S2)

Expected Predicted Information Gain (EPIG) (Bickford Smith et al., 2023) EPIG requires a
probabilistic model in order to work. We follow the authors and obtain a conditional distribution
p(y|x) for a given input x by applying multiple forward passes to this input using ŝ, each time with
different network nodes being dropped, in a random manner. This leads to different predictions for
the same input. Next, EPIG focuses on reducing the predictive uncertainty over a pre-defined part of
the input space. This particular choice is captured by a notion of input distribution p∗(x∗), yielding
samples associated with labels y∗ over which we want to be confident, in terms of prediction. Since
we are mostly interested in increasing the true positive rate among the top high-scored molecules
during a molecular generation process, we put probability mass on the 10% currently most promising
molecules. Then, in a classification setting, we have (Bickford Smith et al., 2023, Equation 5)

xnext = argmax
x∈X

EPIG(x)

= argmax
x∈X

Ep∗(x∗)p(y,y∗|x,x∗)[log p(y∗|x∗,x, y)] (S3)
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Uncertainty sampling. As our model is deterministic, we compute uncertainty as

xnext = argmax
x∈X

H[ŝ(x)] (S4)

H(ŝ(x)) = −(ŝ(x) log ŝ(x) + (1− ŝ(x)) log(1− ŝ(x)))

The function z 7→ −(z log z + (1 − z) log(1 − z)) admits z = 0.5 as its unique maximizer, this
effectively selects the sample x for which the associated prediction ŝ(x) is the closest to 0.5.

One possible other choice would have been to follow the trick described for EPIG to cast ŝ into a
probabilistic model p(y|x), and then use

xnext = argmax
x∈X

H[p(y|x)] (S5)
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