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Abstract

Pre-trained protein language and/or structural models are often fine-tuned on
drug development properties (i.e., developability properties) to accelerate drug
discovery initiatives. However, these models generally rely on a single structural
conformation and/or a single sequence as a molecular representation. We present
a physics-based model whereby structural ensemble representations are fused by
a transformer-based architecture and concatenated to a language representation
to predict antibody protein properties. AbLEF enables the direct infusion of
thermodynamic information into latent space and this enhances property prediction
by explicitly infusing dynamic molecular behavior that occurs during experimental
measurement. We find that (1) ensembles of structures generated from molecular
simulation can further improve antibody property prediction for small datasets,
(2) fine-tuned large protein language models can match smaller antibody-specific
language models at predicting antibody properties, (3) trained multimodal sequence
and structural representations outperform sequence representations alone, (4) pre-
trained sequence with structure models are competitive with shallow machine
learning (ML) methods in the small data regime, and (5) predicting measured
antibody properties remains difficult for limited high fidelity datasets. AbLEF has
been made publicly available at https://github.com/merck/AbLEF.

1 Introduction

Monoclonal antibodies (mAbs) are the fastest growing therapeutic modality accounting for a $210.1
Billion USD market in 2022 [1] which can be attributed to naturally selected intrinsic properties:
target specificity, low toxicity, massive mutation space, thermostability, and metabolic stability. In
early stage mAb development, several developability properties are measured to assess the likelihood
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of success in the clinic including target antigen binding affinity, polyspecific reactivity, aggregation
propensity, titer, hydrophobicity, solubility, thermostability, viscosity, serum half-life, and immuno-
genicity. Although identification of mAb variants with high antigen affinity is possible via antibody
display technologies [2], the optimization on only antigen binding affinity often compromises other
developability properties [3–6]. For example, high aggregation and low thermostability contribute to
the cost of formulation, production, and storage of mAb therapeutics. These compromises increase the
cost of goods (COGS) in mAb manufacturing and result in a current COGs range from $95-200/g, an
order of magnitude above the global consensus target $10/g to enable global access to mAb therapies
[7]. Thus, there is increasing demand to accelerate and reduce the cost of the drug development
process by accurately predicting mAb developability properties.

High throughput experimentation is enabling the collection of developability property datasets that can
be used to build machine learning (ML) models to predict properties from sequence and/or structure;
however, high fidelity datasets are often small (∼ 102-103) relative to sequence space (≥ 1013)
[8], contain clustered sequences, and/or are non-trivial to merge due to differences in experimental
measurement. In the small dataset regime, often shallow ML models are built on sequence and/or
structural descriptors to predict developability properties [5, 9–11]. Recently, pre-trained language
models (LM) and/or structural models have been fine-tuned on developability properties and achieved
comparable performance [10, 12–14]. Moreover, AbPROP [14] reported rank correlation of antibody
developability properties and demonstrated that (1) fine-tuned language models improve predictions
over zero-shot, (2) trained multimodal sequence and structural models outperform sequence alone,
and (3) structural pre-training on the inverse folding problem did not improve property prediction
performance. Despite this success, prediction of measured experimental values is more difficult
than relative Spearman ranking [15–17] and accurate predictions are likely required to accelerate
experimental protein design. Moreover, uncertainty estimation is often difficult or expensive to
assess and is sparsely reported in property prediction models [17–19]. In addition, modern property
prediction models are predominantly trained on single-point representations (i.e., a single sequence
or single structural conformation) and are potentially deprived of rich thermodynamic information
contained along the potential energy surface of molecular ensembles [20]. In fact, molecular ensemble
representations have been shown to improve property predictions, however, most of these techniques
rely on averages (arithmetic or Boltzmann) [21, 22] and there is a lack of robust methodologies to fuse
the members of the molecular ensemble. Such a methodology would enable the flexibility to generate
molecular ensembles that are representative of a given experimental condition (e.g., antibodies at
high temperature, low pH, high concentration, bound/unbound to antigen, etc.) and may be adept
at predicting molecular properties that occur in disparate thermodynamic phase spaces. We present
a novel deep learning framework, AbLEF, which fuses members of the molecular ensemble and
demonstrates improved predictive performance with increasing ensemble length on two property
datasets (Figure 1). Additionally, we assess the ability to predict measured experimental values and
an estimation of uncertainty.

We frame this task as an analog to the computer vision problem of multi-image super-resolution
(MISR) where the objective is to combine an ensemble of low resolution images and fuse them into a
single high resolution image. A recent breakthrough in MISR, implements a novel transformer-based
architecture (TR-MISR) that is insensitive to image order because of the assignment of simultaneous
dynamic attention to all encoded feature vectors [23]. Herein, we propose that this architecture is
suitable for learning dynamic molecular behavior from members of the molecular ensemble (Figure
1) by demonstrating improved predictive performance on a hydrophobic interaction chromatography
retention time (HIC-RT) and temperature of aggregation (Tagg) dataset. Our contribution is three-fold:

1. We demonstrate the utility of supplying thermodynamic information from molecular ensem-
bles into latent space for property prediction.

2. We apply a novel transformer-based architecture to robustly fuse information from members
of the molecular ensemble.

3. We compare this methodology with current methods including shallow ML, protein language
models, and graph neural networks.

2



Figure 1: Graphic of the AbLEF architecture. This includes the language module (left), and
the ensemble fusion module (right). Black arrows indicate the flow of information (sequence or
distogram(s)) during training or inference. Red arrows indicate backpropagation into the AbLEF
architecture. In the ensemble fusion module, there is a key (left), centroid distograms (center), and an
ensemble of aligned Fvs (right) (framework (teal), CDRL1-L3 (purple), CDRH1-H2 (pink), CDR3H
(red)).

2 Methods

2.1 Datasets, Fv structure generation, and ensemble sampling

The hydrophobic interaction chromatography retention time (HIC-RT) dataset contains 659 mAbs
(597/62) (Figure A1A) and the temperature of aggregation (Tagg) dataset contains 521 mAbs
(438/83) (Figure A1B). Detailed description of the experimental methods are provided (Appendix
B.1). The mAbs are modeled as variable fragments (Fv) using the MOE 2022.01 Antibody Modeler
application [24] using homologous template structures and ensemble sampling is performed with
LowModeMD [25] in the Stochastic Titration application (Appendix B.2). The ensemble of structures
are clustered by the backbone atoms’ pairwise distance maps using density-based spatial clustering
(eps=1.9, min_samples=1) [26] and the core structures from each cluster are used as the structural
representations in AbLEF and graph neural network baselines (Appendix B.2). For example, the top
ten most populated structural clusters are selected for AbLEF and the number of structural clusters
used in training is referred to as ensemble length (L). Moreover, the most populated structural cluster
is used for the graph neural network (GNN) baselines. Briefly, the molecular representations for
AbLEF are paired residue distance matrices or distograms computed from the residue centroids (roids)
(Figure 1). Details on the AbLEF and GNN molecular representations are provided (Appendix B).
The test sets are designed to contain low sequence identity from the train/validation set (< 95%)
(Appendix B.3) while simultaneously containing a representative distribution of the developability
property (Figure A1). Model performance was assessed based on the coefficient of determination
(R2) and compared with a two-tailed t-test after testing k-fold cross-validated models on the test set
(k=10) (Appendix B.3).

2.2 AbLEF and baselines

AbLEF. The Antibody Language Ensemble Fusion model (AbLEF) contains two central components:
(1) the pre-trained language module (AbLang, ProtBERT, or ProtBERT-BFD) and (2) the transformer-
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based ensemble fusion module (Figure 1). The language module concatenates a fine-tuned heavy
and light chain language model (W x D) where the width (W) is the size of the Fv sequence (320)
and the hidden dimension (D) is determined by the pre-trained language model: AbLang (768),
ProtBERT (1024), and ProtBERT-BFD (1024). The ensemble fusion module is supplied an ensemble
of distograms (C x L x W x H) and outputs a fused distogram embedding (C x 1 x W x D). The fused
distogram embedding is concatenated to the language module and supplied to a dense layer to predict
the mAb property. Detailed description of the AbLEF architecture is provided (Appendix B.4).

Baselines. We compared AbLEF performance to several baselines including structural descriptors
with machine learning (i.e., MOE + ML) and fine-tuned language models with graph neural networks.
The mAb structural descriptors used in this study are included in MOE 2022.10: surface patch areas
(hydrophobic, positive, negative), interaction energy between the heavy and light chain, relative
angles of the heavy and light chain [27], potential energy, ASPmax [28], mono/dipole/quadrupole
moments [29], isoelectric point [30], mass, etc. (43 total). The features were selected and trained
on seven scikit-learn [31] regressors (Appendix B.5). The graph neural network baselines (GNNs)
included geometric vector perceptrons (GVP) [32] and graph attention networks (GAT) [33]. Similar
to AbLEF, the fine-tuned language model embeddings (AbLang, ProtBERT, and ProtBERT-BFD)
were concatenated to the GNN node features during training and inference (Appendix B.5).

3 Results and Discussion

We investigated the performance of AbLEF by hyperparameter tuning the model architecture on
an ensemble length of ten (L=10). The performance was assessed by retraining and testing at
varying ensemble length (L=1-10). In addition, we performed several ablation studies. Finally,
we compared AbLEF to numerous baselines including: ensemble averaged structural descriptors
from MOE with machine learning (MOE + ML), fine-tuned language models (AbLang, ProtBERT,
ProtBERT-BFD), and fine-tuned language with graph neural networks (GAT, GVP). We used the
coefficient of determination, R2, to assess the models’ ability to predict measured experimental values
on the test set. In addition, we quantified uncertainty and compared model performance by training
and testing k-fold models (k=10). We find that (1) ensembles of structures can improve antibody
property prediction, (2) pre-trained multimodal models can be competitive with shallow ML methods
in the small data regime, (3) fine-tuned large protein language models can match smaller antibody-
specific language models at predicting antibody properties, (4) multimodal molecular representations
outperform sequence-only representations, and (5) predicting measured antibody properties remains
difficult with modern methods/datasets.

3.1 AbLEF predictions

Language-only baselines. The hyperparameter search for the language-only models included the
number of layers to backpropagate (AbLang, ProtBERT, ProtBERT-BFD), the learning rates (fine-
tuned heavy chain model, fine-tuned light chain model, dense layer), the number of warm-up steps,
and the dense layer dropout (Table A1). The language models were hyperparameter tuned on the
HIC-RT and Tagg datasets (Figure A2). ProtBERT was the worst performing language model with an
R2 = 0.25 ± 0.04 (Figure A2A) and R2 = 0.01 ± 0.01 (Figure A2D) on the HIC-RT and Tagg test
set, respectively. ProtBERT-BFD and AbLang demonstrate comparable performance with an R2 =
0.40 ± 0.03 (Figure A2B) and R2 = 0.41 ± 0.06 (Figure A2C) on the HIC-RT test set, respectively.
ProtBERT-BFD also matched AbLang (p=0.19) with an R2 = 0.04 ± 0.02 (Figure A2E) and R2

= 0.07 ± 0.01 (Figure A2F) on the Tagg test set, respectively. These results clearly demonstrate
that, with datasets on the order of 102-103, HIC-RT is an easier property to predict from sequence
than Tagg and other properties that were considered (e.g., temperature of melt, temperature of melt
onset, polyspecific reactivity, etc.) (not shown). Importantly, this is consistent with AbPROP which
demonstrates that HIC-RT and Tagg are the most predictable properties [14]. In addition, ProtBERT
performed significantly worse than AbLang (p=0.04 and p=0.0005) and ProtBERT-BFD (p=0.008 and
p=0.05) on the HIC-RT and Tagg datasets, respectively, demonstrating that generic protein language
models can achieve comparable performance to an antibody-specific language model when trained on
a large enough dataset (∼2.1 billion protein sequences vs < 15 million antibody sequences). Although
the protein language scaling laws are not yet well-defined, significantly increased performance of the
fine-tuned ProtBERT-BFD model compared to the ProtBERT model demonstrates the importance of
the pre-training task because BFD (Big Fantastic Database) is trained on 10X more protein sequences
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Figure 2: AbLEF performance with increasing ensemble length. The coefficient of determination
(R2), y-axis, is plotted as a function of the ensemble length, x-axis. Results represent the mean (dark
lines) and standard error (light shading) of the models (k=10) on the test set for (A) the HIC-RT and
(B) Tagg datasets. Statistical significance is assessed using a two-tailed t-test (*, **, *** correspond
to p values < 0.05, 0.01, 0.001, respectively).

with an identical model architecture (Appendix B.4). This indicates that language model fine-tuning
performance may continue to scale with additional protein/antibody sequences. Next, we proceeded
to utilize the AbLang language model to investigate various ablation studies and the effect of ensemble
length on the AbLEF model.

Ensemble length. The AbLEF model performance was evaluated on two datasets, HIC-RT and
Tagg. The molecular ensembles were generated using MOE stochastic titration [24] at 300 K and
400 K, respectively, which employs LowModeMD [25] to represent the molecular conformations
at the measured thermodynamic conditions (Appendix B). LowModeMD was primarily chosen for
compute efficiency and future work will assess the computation trade-off of more robust ensemble
generation methodologies (e.g., molecular dynamics, metadynamics, replica-exchange, etc.). During
hyperparameter tuning, the AbLEF model was trained on an ensemble length of 10 (L=10) and re-
trained and tested at varying ensemble length (L=1-10). Interestingly, the AbLEF model performance
improved with ensemble length for both HIC-RT and Tagg datasets (Figure 2). For example, the
maximum performance was achieved at L=3 for HIC-RT (R2 = 0.49 ± 0.04) and L=5 for Tagg (R2

= 0.13 ± 0.02 ) on the test set. In addition, we found consistent performance for ProtBERT and
ProtBERT-BFD language models on the HIC-RT and Tagg datasets (Figure A3). Moreover, HIC-RT
performance at L=3 (p=0.0006) and L=2 (p=0.02) was significantly better than performance at L=1
(R2 = 0.32 ± 0.06) (Figure 2A). Beyond L=3, the AbLEF HIC-RT performance flattened or slightly
fluctuated around R2∼0.45 and remained statistically significant at L=10 (p=0.02). Similarly, Tagg

performance at L=5 (p=0.01) and L=4 (p=0.03) was significantly better than performance at L=1
(R2 = 0.07 ± 0.01) (Figure 2B). Beyond L=5, the AbLEF Tagg performance flattened or slightly
fluctuated around R2∼0.12 and also remained statistically significant at L=10 (p=0.03). These results
demonstrate that the AbLEF architecture can robustly fuse members of the molecular ensemble by
significantly improved performance on the test set with ensemble length for the HIC-RT and Tagg

datasets. The flattening of the AbLEF performance beyond the Lth ensemble length (L = 3, 5) may
be attributed to reduced structural diversity in the ensemble beyond the Lth structural cluster (i.e, a
limitation of the ensemble generation method) and/or destructive interference [34]. Moreover, since
performance increased with ensemble length for both datasets and remained statistically significant
at L=10, we expect a continued performance increase with more advanced ensemble generation
methods that will increase the structural diversity within a given ensemble. Additionally, these results
demonstrate that the optimal ensemble length for property prediction is dependent on the property
as well as the ensemble generation method. Next, we assessed the performance of the AbLEF
architecture on the HIC-RT dataset by performing several ablation studies.

Ablations. To unveil the minimum description length, we investigated AbLEF performance with
the variable regions sliced out of the Fv distograms(Figure 3). The variable region indices were
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Figure 3: AbLEF performance with CDRs-only and CDR3s-only. This includes (A) AbLEF with
Fv (B) AbLEF with CDRs-only and (C) AbLEF with CDR3s-only. AbLang is included in the AbLEF
with CDRs-only and AbLEF with CDR3s-only hyperparameter search. The loss function was mean
squared error and the hyperparameters were scored based on the average mean squared error across
the validation sets (k=10). The ensemble length was set to 3 corresponding to the best performing
AbLEF with Fv model. The x-axis is the measured HIC-RT and the y-axis is the predicted HIC-RT in
minutes. The dashed line is the parity line, y=x. Performance metrics are displayed in the bottom
right panel and include the coefficient of determination (R2), Pearson correlation coefficient (rp), and
the Spearman rank correlation coefficient (rs). The metric is the performance on the test set and the
error corresponds to the standard error across the ten models trained during k-fold cross-validation
(k=10).

determined by IMGT numbering of the complementarity determining regions (CDRs) which included
the 6 CDRs (CDRs-only) and the 2 CDR3s (CDR3s-only). The CDRs-only and CDR3s-only ablation
studies were performed by slicing out the distograms at the CDRs-only and CDR3s-only indices,
respectively. Setting the ensemble length to 3 (i.e., maximum performance for the Fv distogram),
we redid the hyperparameter search for AbLEF and evaluated performance on the HIC-RT test set.
The best performing AbLEF model with CDRs-only had an average R2 = 0.53 ± 0.04 on the test
set (Figure 3B). Moreover, the best performing AbLEF model with CDR3s-only had an average
R2 = 0.31 ± 0.04 on the test set (Figure 3C). Interestingly, the CDRs-only is not significantly
different from the full Fv distogram ensemble (p=0.50), but the CDR3s-only is significantly worse
than both (Fv: p=0.005, CDRs-only: p=0.001). This suggests that inclusion of the 6 CDRs is crucial
in predicting HIC-RT.

Next, we ablated the best performing AbLEF Fv model by separately removing the language and
transformer-based ensemble fusion modules. We found that the AbLang module was contributing
to most of the performance with an R2 = 0.41 ± 0.06 compared to the transformer-based ensemble
fusion module with an R2 = 0.09 ± 0.02 (Figure A4). However, the ensemble fusion module
significantly reduces model error across the k models (p=0.02) from k-fold cross-validation (k=10)
thus contributing to the overall performance. This is consistent with AbPROP which demonstrates
that pre-trained language models contribute a substantial portion of the prediction performance [14].
Finally, the AbLEF ensemble-only model was hyperparameter tuned to investigate the maximum
performance that can be expected from the ensemble of structures (Figure A5). The hyperparameter
search for the AbLEF ensemble-only included the learning rates (encoder/decoder and transformer),
the number of warm-up steps, the number of layers in the encoder, the size of the encoded feature
vectors, the number of layers in the transformer, the number of attention heads, size of the multilayer
perceptron, and dropout (dense layer and transformer) (Table A1). The best performing AbLEF
ensemble-only model had an average R2 = 0.14 ± 0.01 on the test set (Figure A5). Interestingly, this
is significantly better than the ablated ensemble-only model (p=0.04), however, significantly worse
than the AbLang only. Future work will address the optimal structural ensemble pre-training tasks
for downstream property prediction.

3.2 Baseline predictions

MOE + ML. We computed numerous ensemble averaged structural descriptors from MOE (43 total),
learned the most important features, and trained multiple sci-kit learn regressors on the HIC-RT and
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Tagg datasets (Table A2). For HIC-RT, the best structural descriptors included the CDR patch surface
areas (hydrophobic, positive, negative), the hydrophobic moment, and the dipole moment (Figure
A6A). The CDR patch areas are consistent with a previous generalized linear regression model on
a smaller dataset [5] and a recently reported xgboost model [11]. Moreover, the selection of CDR
structural descriptors is consistent with the AbLEF ablation study where we demonstrate that the 6
CDRS are crucial in predicting HIC-RT (Figure 3).The AbLEF model significantly outperformed
this random forest regressor with a R2 = 0.43 ± 0.01 on the HIC-RT test set (p=0.0002)(Table 1).
For Tagg, the best structural descriptors included the heavy and light chain vector distance [27],
radius of gyration, the 3D isoelectric point [30], and negatively charged surface area (Figure A6B).
The vector distance measures the length between the heavy and light chain along a principal axis of
rotation which may be representative of the molecular stability. Accordingly, the radius of gyration
is a relative measure of molecular flexibility. These learned dynamic properties ranked highest in
feature importance (Figure A6B) which supports the hypothesis that Tagg is an intrinsically dynamic
feature best captured by molecular ensembles. This random forest regressor achieved a R2 = 0.17
± 0.005 on the Tagg test set (Table 1) comparable to the best AbLEF model performance (p=0.07).
These results demonstrate that the AbLEF deep learning models are at least competitive with the
MOE + ML baselines in the small data regime (102-103) and outperform MOE + ML baseline on the
HIC-RT prediction task.

Table 1: AbLEF and baseline model performance. Model performance is assessed by the coefficient
of determination, R2, after k-fold cross validation (k=10). The mean and standard error of the k-
models are reported on the test set. The columns are the model type, performance on the HIC-RT
dataset, and performance on the Tagg dataset, respectively. The rows consist of model types separated
by class: shallow ML, language-only, GNNs with language, and AbLEF models. The model class is
partitioned by a black horizontal line. The best performing model for each class is italicized and the
best deep learning model is also bolded.

MODEL HIC-RT Tagg

MOE + ML 0.43 ± 0.01 0.17 ± 0.005

ProtBERT (only) 0.25 ± 0.04 0.01 ± 0.01
ProtBERT-BFD (only) 0.40 ± 0.03 0.04 ± 0.02
AbLang (only) 0.41 ± 0.06 0.07 ± 0.01

GVP (ProtBERT) 0.30 ± 0.03 0.05 ± 0.02
GVP (ProtBERT-BFD) 0.42 ± 0.02 0.11 ± 0.02
GVP (AbLang) 0.23 ± 0.05 0.10 ± 0.02
GAT (ProtBERT) 0.35 ± 0.03 0.04 ± 0.01
GAT (ProtBERT-BFD) 0.47 ± 0.07 0.11 ± 0.01
GAT (AbLang) 0.40 ± 0.04 0.07 ± 0.02

AbLEF (ProtBERT) 0.27 ± 0.031 0.03 ± 0.022

AbLEF (ProtBERT-BFD) 0.45 ± 0.031 0.05 ± 0.022

AbLEF (AbLang) 0.49 ± 0.041 0.13 ± 0.022

Graph neural network baselines. We compared the AbLEF model to several graph neural network
baselines including geometric vector perceptrons (GVP) (Figure A7) and graph attention networks
(GAT) (Figure A8). The GNNs were trained on the HIC-RT and Tagg datasets (Table A3). We
found that the GNNs with ProtBERT or ProtBERT-BFD outperformed the language-only models
in 4/4 cases on HIC-RT and 4/4 cases on Tagg (Table 1). Interestingly, the GNNs with AbLang
achieved similar performance as the language-only models in 1/2 cases on HIC-RT and 2/2 cases
on Tagg. Overall, the GNNs either achieve equivalent or improved performance in 5/6 cases on
HIC-RT and 6/6 cases on Tagg. This demonstrates that multimodal sequence and structural models
outperform sequence models alone on antibody property datasets, however, this performance boost
is predominately achieved with the ProtBERT or ProtBERT-BFD language models. Finally, the
GNNs were competitive with the AbLEF model on the HIC-RT and Tagg datasets. For example,
the best performing GAT model with ProtBERT-BFD achieved a R2 = 0.47 ± 0.07 on the HIC-RT

1AbLEF model performance (L=3)
2AbLEF model performance (L=5)
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and R2 = 0.11 ± 0.04 on the Tagg test set (Figure A8). Although AbLEF with AbLang slightly
outperformed GAT with ProtBERT-BFD, this was not statistically significant for HIC-RT (p=0.8)
or Tagg (p=0.4). Despite this, AbLEF was able to significantly outperform GAT with AbLang and
achieved comparable results to GAT/GVP with ProtBERT-BFD (Table 1). This demonstrates that the
AbLEF architecture achieves competitive performance with modern GNNs (Table 1). Future work
will address the appropriate attention or message passing mechanism to fuse ensembles of graph
representations.

4 Conclusion

We present a novel transformer-based fusion method (AbLEF) for predicting antibody developability
properties from Fv structural ensembles combined with fine-tuned language models. We demonstrate
that AbLEF significantly outperforms language-only baselines. Additionally, we demonstrate that
AbLEF is capable of fusing ensembles of structural representations to improve predictions of antibody
developability properties. By generating ensembles of structures at their measured thermodynamic
conditions, this methodology directly infuses thermodynamic information into latent space and
significantly improves property prediction. For example, AbLEF significantly improved when
increasing ensemble length from 1 to 3 for HIC-RT and 1 to 5 for Tagg . Despite this success, several
datasets of similar size (e.g., temperature of melt, temperature of melt onset, polyspecific reactivity,
etc.) were not able to achieve a sufficient regression performance R2 > 0 at predicting measured
experimental values and will likely require much more data > 103 or improved algorithm sample
efficiency. Moreover, future work is needed to improve sample efficiency because high fidelity
datasets for antibody developability properties are likely to remain < 105 for the foreseeable future.
We believe that the AbLEF architecture is a promising method for predicting antibody developability
properties from structural ensembles because AbLEF achieved competitive results to modern graph
neural networks with language as well as structural descriptors with shallow ML on small datasets
∼102. Future research will aim to improve sample efficiency by comparing molecular ensemble
generation methods, assessing various ensemble fusion pre-training tasks, and fusing molecular graph
representations.
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Appendix A Supplementary Information

Figure A1: HIC-RT and Tagg dataset distributions. This includes train and test sets for (A)
HIC-RT and (B) Tagg. The y-axis represents the count of datapoints and the x-axis is the property
endpoint in (A) minutes and (B) degrees Kelvin. The train and test sets are shaded in black and blue,
respectively. The mean and standard deviation of the train and test sets is displayed in their respective
color and units. Pairwise sequence identity is computed between the train/validation and test sets after
multiple sequence alignment (MSA) (C-D). The x-axis is the pairwise identity percentage and the
y-axis is the count of sequence pairs from the heavy (red) or light (purple) chain distributed into 5%
bins. This includes all sequence pairs between the train/validation and test sets for the (C) HIC-RT
and (D) Tagg datasets. The mean and standard deviation of the sequence identities is displayed in the
top right corner of each panel.

Table A1: The searched AbLEF hyperparameters spaces. For each model, the respective hyperpa-
rameter sets used in 100 sample Bayesian optimization with hyperband (BOHB) runs.

HYPERPARAMETERS ABLEF LANGUAGE-ONLY ABLEF ENSEMBLE-ONLY ABLEF CDRS-ONLY ABLEF CDR3S-ONLY

LR CODER LOGUNIFORM(1E-6, 1E-2) LOGUNIFORM(1E-6, 1E-2) LOGUNIFORM(1E-6, 1E-2) LOGUNIFORM(1E-6, 1E-2) LOGUNIFORM(1E-6, 1E-2)
LR ENS TRANSFORMER LOGUNIFORM(1E-6, 1E-2) N/A LOGUNIFORM(1E-6, 1E-2) LOGUNIFORM(1E-6, 1E-2) LOGUNIFORM(1E-6, 1E-2)
LR LC LOGUNIFORM(1E-9, 1E-5) LOGUNIFORM(1E-9, 1E-5) N/A LOGUNIFORM(1E-9, 1E-5) LOGUNIFORM(1E-9, 1E-5)
LR HC LOGUNIFORM(1E-9, 1E-5) LOGUNIFORM(1E-9, 1E-5) N/A LOGUNIFORM(1E-9, 1E-5) LOGUNIFORM(1E-9, 1E-5)
LR STEP RANDINT(1,5) RANDINT(1,5) RANDINT(1,5) RANDINT(1,5) RANDINT(1,5)
ENCODER N LAYERS CHOICE([1,2]) N/A CHOICE([1,2]) CHOICE([1,2]) CHOICE([1,2])
ENCODER N FEATURE VECTORS CHOICE([16, 32, 64]) N/A CHOICE([16, 32, 64]) CHOICE([16, 32, 64]) CHOICE([16, 32, 64])
TRANSFORMER DEPTH CHOICE([1,2]) N/A CHOICE([1,2]) CHOICE([1,2]) CHOICE([1,2])
TRANSFORMER HEADS CHOICE([1, 2, 4, 8]) N/A CHOICE([1, 2, 4, 8]) CHOICE([1, 2, 4, 8]) CHOICE([1, 2, 4, 8])
TRANSFORMER MLP DIM CHOICE([16, 32, 64, 128]) N/A CHOICE([16, 32, 64, 128]) CHOICE([16, 32, 64, 128]) CHOICE([16, 32, 64, 128])
TRANSFORMER DROPOUT UNIFORM(0.1, 0.5) N/A UNIFORM(0.1, 0.5) UNIFORM(0.1, 0.5) UNIFORM(0.1, 0.5)
LANGUAGE FREEZE LAYER COUNT RANDINT(8/20,12/30) RANDINT(8/20,12/30) N/A RANDINT(8/20,12/30) RANDINT(8/20,12/30)
DENSE LAYER DROPOUT UNIFORM(0.1, 0.5) UNIFORM(0.1, 0.5) UNIFORM(0.1, 0.5) UNIFORM(0.1, 0.5) UNIFORM(0.1, 0.5)
CDR PATCH FALSE FALSE FALSE CDRS CDR3S
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Figure A2: Language-only baseline performance. The top and bottom row designate the perfor-
mance of the hyperparameter-tuned language models on the HIC-RT and Tagg datasets, respectively.
The columns designate the language model: ProtBERT (A,D), ProtBERT-BFD (B,E), and AbLang
(C,F). The x-axes are the measured values and the y-axes are the predicted values in minutes and
degrees Kelvin for HIC-RT (A-C) and Tagg (D-F), respectively. The performance is reported as the
mean and standard error of the k-trained models on the test set (k=10). The dashed line is the parity
line, y=x. Performance metrics are displayed in the bottom right panel and include the coefficient of
determination (R2), Pearson correlation coefficient (rp), and the Spearman rank correlation coefficient
(rs).

Table A2: The searched MOE + ML hyperparameters spaces. For each model, the respective
hyperparameter sets were used in 100 sample skopt runs.

HYPERPARAMETERS LINEAR REGRESSION ELASTIC NET KNN SVM RANDOM FOREST ADABOOST XGBOOST

POWER UNIFORM(0, 3) N/A N/A N/A N/A N/A N/A
ALPHA UNIFORM(1E-6, 1E6) UNIFORM(1E-6, 1E6) N/A N/A N/A N/A N/A
L1 RATIO N/A UNIFORM(0, 1) N/A N/A N/A N/A N/A
N NEIGHBORS N/A N/A UNIFORM(1, 50) N/A N/A N/A N/A
LEAF SIZE N/A N/A UNIFORM(1, 50) N/A N/A N/A N/A
P N/A N/A UNIFORM(1,2) N/A N/A N/A N/A
C N/A N/A N/A UNIFORM(1E-1,1E3) N/A N/A N/A
GAMMA N/A N/A N/A UNIFORM(1E-4,1E3) N/A N/A N/A
MAX DEPTH N/A N/A N/A N/A N/A N/A UNIFORM(1,10)
MAX FEATURES N/A N/A N/A N/A CHOICE([’SQRT’, ’LOG2’]) N/A N/A
MAX LEAF NODES N/A N/A N/A N/A N/A N/A N/A
N ESTIMATORS N/A N/A N/A N/A UNIFORM(10, 1000) UNIFORM(10, 1000) UNIFORM(10, 1000)

Table A3: The searched GNN hyperparameters spaces. For each model, the respective hyperpa-
rameter sets used in 100 sample Bayesian optimization with hyperband (BOHB) runs.

HYPERPARAMETERS GVP GAT

LR CODER LOGUNIFORM(1E-6, 1E-2) LOGUNIFORM(1E-6, 1E-2)
LR LC LOGUNIFORM(1E-9, 1E-5) LOGUNIFORM(1E-9, 1E-5)
LR HC LOGUNIFORM(1E-9, 1E-5) LOGUNIFORM(1E-9, 1E-5)
LR STEP RANDINT(1,5) RANDINT(1,5)
LANGUAGE FREEZE LAYER COUNT RANDINT(8/20,12/30) RANDINT(8/20,12/30)
DENSE LAYER DROPOUT UNIFORM(0.1, 0.5) UNIFORM(0.1, 0.5)
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Figure A3: AbLEF performance with language models. The top and bottom row designate
the performance of the hyperparameter-tuned AbLEF models on the HIC-RT and Tagg datasets,
respectively. The columns designate the language model: ProtBERT (A,D), ProtBERT-BFD (B,E),
and AbLang (C,F). The x-axes are the measured values and the y-axes are the predicted values in
minutes and degrees Kelvin for HIC-RT (A-C) and Tagg (D-F), respectively. The performance is
reported as the mean and standard error of the k-trained models on the test set (k=10). The dashed
line is the parity line, y=x. Performance metrics are displayed in the bottom right panel and include
the coefficient of determination (R2), Pearson correlation coefficient (rp), and the Spearman rank
correlation coefficient (rs).

Figure A4: Ablation of the AbLEF architecture. The best performing AbLEF model was ablated
to determine the relative contribution of the modules. This includes (A) the best performing AbLEF
model, (B) the ablated AbLang module, and (C) the ablated ensemble fusion module. The loss
function was mean squared error and the best performing model was saved based on the average mean
squared error across the validation sets (k=10) during training. The ten models were then assessed on
the test set and the panels display performance metrics in the bottom right corner. This includes the
mean and standard error of the coefficient of determination (R2), Pearson correlation coefficient (rp),
and the Spearman rank correlation coefficient (rs). The ensemble length was set to 3 corresponding
to the best performing AbLEF with Fv model. The x-axis is the measured HIC-RT and the y-axis is
the predicted HIC-RT in minutes. The dashed line is the parity line, y=x.
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Figure A5: AbLEF ensemble-only performance. The ensemble fusion module was hyperparameter
tuned on the HIC-RT dataset to evaluate the maximum possible performance with our given dataset.
The loss function was mean squared error and the best performing model was saved based on the
average mean squared error across the validation sets (k=10) during training. The ten models were
then assessed on the test set and the panels display performance metrics in the bottom right corner.
This includes the mean and standard error of the coefficient of determination (R2), Pearson correlation
coefficient (rp), and the Spearman rank correlation coefficient (rs). The ensemble length was set to 3
corresponding to the best performing AbLEF with Fv model. The x-axis is the measured HIC-RT
and the y-axis is the predicted HIC-RT in minutes. The dashed line is the parity line, y=x.

Figure A6: MOE + ML performance. Structural descriptors were computed in MOE and used to
generate comparative models with shallow machine learning methods. After feature selection and
hyperparameter tuning seven scikit-learn regressors, random forest models were the best performing
regressors on both the (A) HIC-RT and (B) Tagg test sets. The list of features from exhaustive
feature selection are ranked by feature importance and displayed in the upper left of each panel.
This includes train and test sets for (A) HIC-RT and (B) Tagg. The x-axis is the measured values
the y-axis is the predicted values for HIC-RT and Tagg, respectively. The dashed line is the parity
line, y=x. Performance metrics are displayed in the bottom right panel and include the coefficient of
determination (R2), Pearson correlation coefficient (rp), and the Spearman rank correlation coefficient
(rs). The mean and standard error of the models are computed with a jackknifing technique where
k-models are trained and tested (k=10).
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Figure A7: GVP model performance. The top and bottom row designate the performance of the
hyperparameter-tuned GVP models on the HIC-RT and Tagg datasets, respectively. The columns
designate the language model: ProtBERT (A,D), ProtBERT-BFD (B,E), and AbLang (C,F). The
x-axes are the measured values and the y-axes are the predicted values in minutes and degrees Kelvin
for HIC-RT (A-C) and Tagg (D-F), respectively. The performance is reported as the mean and
standard error of the k-trained models on the test set (k=10). The dashed line is the parity line,
y=x. Performance metrics are displayed in the bottom right panel and include the coefficient of
determination (R2), Pearson correlation coefficient (rp), and the Spearman rank correlation coefficient
(rs).
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Figure A8: GAT model performance. The top and bottom row designate the performance of the
hyperparameter-tuned GAT models on the HIC-RT and Tagg datasets, respectively. The columns
designate the language model: ProtBERT (A,D), ProtBERT-BFD (B,E), and AbLang (C,F). The
x-axes are the measured values and the y-axes are the predicted values in minutes and degrees Kelvin
for HIC-RT (A-C) and Tagg (D-F), respectively. The performance is reported as the mean and
standard error of the k-trained models on the test set (k=10). The dashed line is the parity line,
y=x. Performance metrics are displayed in the bottom right panel and include the coefficient of
determination (R2), Pearson correlation coefficient (rp), and the Spearman rank correlation coefficient
(rs).
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Appendix B Extended Methods

B.1 Datasets

Hydrophobic Interaction Chromatography Retention Time (HIC-RT). The HIC-RT dataset used
in this study contains 659 mAbs (597/62) (Figure A1A) with groups of sequences designed for
different antigen targets [11]. Described previously [5], the hydrophobicity of a given mAb was
determined by recording the elution time through a hydrophobic interaction chromatography column
at 100 mM sodium phosphate, pH 7.0, and T = 300 K.

Temperature of aggregation (Tagg). The Tagg dataset used in this study contains 521 mAbs (438/83)
(Figure A1B) with groups of sequences designed for different antigen targets [11]. Described
previously [5, 35], Nano-DSF (nano - differential scanning fluorimetry) studies were performed using
the Nanotemper Prometheus NT.48 instrument. Briefly, the samples (10 µL at 0.5 mg/mL) were
loaded into capillaries and the temperature ramped 1 ◦C/min from 20 ◦C to 94.8 ◦C. The colloidal
stability of the sample can be determined by measuring the attenuation of back reflected light intensity
passing through the sample and the aggregation temperature (Tagg) is defined as the point at which
light scattering increases (or back reflected light intensity decreases) due to colloidal instability.

B.2 Fv structure generation and ensemble sampling

The variable fragment (Fv) regions of the IgG1 mAbs were homology modeled using the Antibody
Modeler application in MOE 2022.01 [24]. Homology search is performed to identify the most similar
template structure in the PDB for the framework region and the six complementarity determining
regions (CDRs). The models were selected by the best MOE score (default settings) and minimized
with the Amber10:EHT force field using the GB implicit solvent [36]. Ensemble sampling was
performed using the stochastic titration application in MOE 2022.01 which employs LowModeMD
sampling [25] to generate 50 structures under the following thermodynamic conditions: pH 7.0 ±
0.5, T = 300 K (HIC-RT) or 400 K (Tagg), NaCl = 100 mM, and the GB implicit solvent [36]. The
Fv backbone atoms are subject to default harmonic position restraints: 0.5 Å buffer zone and 10
kcal/mol· Å2 force constant. LowModeMD was selected for ensemble generation because it is a fast
and efficient method to sample the potential energy surface. Structural descriptors were calculated
for all structures and the arithmetic averages are used in the shallow ML methods. For antibody
language ensemble fusion (AbLEF), the 50 structures were clustered using density-based spatial
clustering (eps=1.9, min_samples=1) [26] based on the backbone atoms’ pairwise distance maps and
the top ten clusters were selected. Additionally, the eps core structure was selected from each cluster
as the predominate structural representation of each cluster. The residue-residue distance maps or
distograms were calculated for each eps core structure using the residue centroid (roid) where the
centroid represents the center of mass (excluding hydrogens). For the graph neural network baselines,
geometric vector perceptrons and graph attention network (GVP and GAT), the most populated eps
core cluster was used as the structural representation.

B.3 Sequence clustering and train/test assessment

The test set was designed to contain low sequence identity (< 95%) from the train/validation set to
minimize data leakage and provide a worst-case scenario model fit. Briefly, the sequence analysis
can be summarized in 2 steps [11, 37, 38]: (1) sequences are clustered by generating a pairwise
mutation matrix (2) sequences are stratified such that sequence identity is < 95% in the test set, the
test set contains approximately 10-20% of the dataset, and there is a representative distribution of the
developability property in both the train/validation and test sets (Figure A1) [11]. The maximum
sequence identity between training/validation and test sets was 94.1% and 90.1% for the HIC-RT
(Figure A1C) and Tagg (Figure A1D) datasets, respectively. Sequence identity is computed in MOE
[24] after multiple sequence alignment (MSA) and defined as the number of residue matches divided
by sequence length. Additional datasets were considered (e.g., temperature of melt, temperature
of melt onset, polyspecific reactivity, etc.), but did not achieve a sufficient regression performance
R2 > 0 at predicting measured experimental values and will likely require more data > 103 (not
shown). To assess the confidence and significance of predictions on these small datasets, k-fold
(k=10) cross-validation was employed in the training/validation stage and all 10 models were used
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to predict the test set. The significance of difference between means and standard deviations is
determined with a two-tailed t-test and two-tailed F-test, respectively.

B.4 AbLEF

This model contains two central components: (1) the pre-trained language module (AbLang, Prot-
BERT, or ProtBERT-BFD) and (2) the transformer-based ensemble fusion module (Figure 1). AbLang
[39] is a transformer-based language model with ∼85 million parameters and descendant of BERT
[40] that is pre-trained on a database of antibody sequences from the Observed Antibody Space (OAS)
[41] (∼14 million heavy chains, ∼0.19 million light chains). The original task of AbLang is to predict
masked residues in the antibody heavy or light chain. Similarly, ProtBERT and ProtBERT-BFD
[42] were trained on ∼217 million and ∼2.1 billion antibody nonexclusive protein sequences from
UniRef100 [43] and BFD (Big Fantastic Database) [44], respectively, and contain ∼420 million
parameters. The language module is supplied a heavy and light chain sequence (max length 160 x 1
per chain) and outputs a concatenated sequence embedding from the respective pre-trained language
light or heavy chain model (W x D) (Figure 1). The hidden dimension (D) is determined by the
pre-trained language model: AbLang (768), ProtBERT (1024), and ProtBERT-BFD (1024). The pre-
trained language models are fine-tuned on the heavy and light chain sequences by backpropagating
into the last 1/3 of language model layers. Therefore, the number of frozen layers for each model was
hyperparameter tuned: AbLang (8-12), ProtBERT (20-30), and ProtBERT-BFD (20-30). The width
of the tensors (W) is determined by AbLEF mode: Fv (320), CDRs-only (128), CDR3s-only (64).
The ensemble fusion module is supplied an ensemble of distograms (C x L x W x H) and outputs a
fused distogram embedding (C x 1 x W x D). The language module and ensemble fusion module are
concatenated and supplied to a dense layer to predict the mAb property. The distograms are calculated
from the residue-residue pair centroids and shown as heat maps in Å (Figure 1). IMGT numbering
[45] is used to determine the CDR locations in the distograms and zero-padding is consistent with the
sequence gap tokens (-) determined by the IMGT canonical alignment.

The transformer-based ensemble fusion module is based on the TR-MISR architecture containing
an encoder, transformer, and decoder [23]. The distograms are first encoded into feature vectors
(Figure 1). The transformer contains an additional learnable embedding vector that fuses these
feature vectors. This allows for attention to be applied to all members of the ensemble simultaneously
when generating the fused representation. As in TR-MISR, this architecture does not require pre-
training because the fusion module does not need to learn the spatial relation between feature vectors
(number of trained image fusions, n=593) [23]. In addition, AbPROP [14] previously found no
advantage to using pre-trained structural models on inverse folding, however, future work may
explore alternative pre-training tasks to increase sample efficiency for molecular property prediction.
The fused representation is then decoded, concatenated to the language model, and run through a
dense layer to predict the mAb property.

Hyperparameters were selected using the Bayesian optimization with hyperband (BOHB) algorithm
[46] implemented by Ray Tune [47] (Table A1). This algorithm reduces hyperparameter search
wall time up to 50X by combining the sample efficiency of Bayesian optimization and the adaptive
sampling/ early stopping advantages of bandit methodologies [46]. The best hyperparameter set was
selected based on the lowest average mean squared error across the k-fold validation sets after a
100 sample BOHB run (coefficient of determination (R2), Pearson correlation coefficient (rp), and
the Spearman rank correlation coefficient (rs) are also monitored). Final performance is evaluated
based on the average and standard deviation of the k models on the test set. Hyperparameter selection
process was performed at an ensemble length of 10 and then retrained and tested at ensemble lengths
1-10. For the AbLang-only and ensemble-only baselines, the hyperparameters were re-selected
with the same 100 sample BOHB runs (Table A1). Likewise, for the CDRs-only and CDR3s-only
hyperparameter searches. The learning rate decay strategy was adopted from BERT with linear
increase warm-up and inverse square root decay [40]. All runs were performed for 50 epochs, with
batch size 16, at 32-bit precision, using L2 loss (MSE), utilizing the Adam optimizer [48], and on 4
A100 GPUs with 80 GB of memory.

B.5 Baselines

Structural descriptors + ML baselines. The mAb structural descriptors used in this study are
included in MOE 2022.10: surface patch areas (hydrophobic, positive, negative), interaction energy
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between the heavy and light chain, relative angles of the heavy and light chain [27], potential
energy, ASPmax [28], mono/dipole/quadrupole moments [29], isoelectric point [30], mass, etc. (43
total). The descriptors were arithmetically averaged over the ensemble, and selected in the following
sequential manner before training of the regressors:(1) ranked by random forest feature importance,
(2) recursive features selected, and (3) exhaustive features selected from the top 10 ranked descriptors
after recursion (i.e., 10 chose 1-10) [49]. Next, the features were trained on seven scikit-learn
[31] regressors using k-fold (k=10) cross-validation, hyperparameter searched (skopt), ranked by
mean squared error, and refit (Table A2). The regressors included were linear regression, elastic
net, support vector machine, k nearest neighbors, random forest, adaboost, and xgboost. The best
regressor was selected based on the lowest mean squared error on the test set. Uncertainty estimation
was determined by a jackknifing technique [50] where the standard deviation in performance is
computed by testing the k-fold (k=10) trained models on the test set. We denote these models that are
learned from the MOE structural descriptors as MOE + ML throughout the manuscript.

Graph neural network baselines. The graph neural network (GNN) baselines included geometric
vector perceptrons (GVP) [32] and graph attention networks (GAT) [33]. First, the most populated
eps core cluster structure is selected and converted to a k nearest neighbor (kNN) graph representation
G(n,e) with nodes (n) representing Cα coordinates and edges (e) representing the k nearest neighbors
(k=30). In addition, several node and edge features are computed for GVP message passing including:
sine and cosine of the three backbone dihedral angles as scalar node features, six unit vectors
describing the orientation of the protein backbone as vector node features, a distance between
residues (Cα-Cα) as a scalar edge feature, and a unit vector describing the orientation of the residues
as a vector edge feature [32]. For comparison to AbLEF, the GNNs were not pre-trained and the
language model embeddings from the fine-tuned AbLang, ProtBERT, or ProtBERT-BFD models are
concatenated to the node scalar features during training and inference [13]. Hyperparameter search
was performed analogously to AbLEF with 100 BOHB tuning runs on the hyperparameters (Table
A3).
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