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Abstract

The success of therapeutic antibodies relies on their ability to selectively bind
antigens. AI-based antibody design protocols have shown promise in generating
epitope-specific designs. Many of these protocols use an inverse folding step
to generate diverse sequences given a backbone structure. Due to prohibitive
screening costs, it is key to identify candidate sequences likely to bind in vitro.
Here, we compare the efficacy of 8 common scoring paradigms based on open-
source models to classify antibody designs as binders or non-binders. We evaluate
these approaches on a novel surface plasmon resonance (SPR) dataset, spanning 5
antigens. Our results show that existing methods struggle to detect binders, and
performance is highly variable across antigens. We find that metrics computed on
flexibly docked antibody-antigen complexes are more robust, and ensembles scores
are more consistent than individual metrics. We provide experimental insight to
analyze current scoring techniques, highlighting that the development of robust,
zero-shot filters is an important research gap.

1 Introduction

Antibodies are a prominent class of therapeutic agents, primarily because they can selectively bind to
a wide array of disease-causing target antigens. This binding specificity is governed by interactions
between the antibody’s paratope region and the antigen’s epitope region [1]. Epitope specificity is
primarily facilitated by the structure of hypervariable loops in the paratope called complimentarity
determining regions (CDRs).

Computationally designing the CDRs such that they bind to specific epitopes with high affinity has
become a problem of great interest. Researchers often start with a known or predicted antibody
backbone structure, and the task is to design sequences that assume this backbone conformation [2].
Recently, generative machine learning methods have proven effective for this inverse folding problem
on protein design [3]. Given the hypervariability of CDRs, there are many sequences that can fold
into the same 3D backbone structure. Filtering the diverse outputs of an inverse folding model in
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silico to select for sequences with greater chance of in vitro success remains an important challenge,
since experimental resources are often limited.

In the protein space, many in silico metrics are commonly used to evaluate the quality of designs
[4], [5]. Here, we investigate how these metrics perform for antibodies. We benchmark several
scoring paradigms on their ability to filter antibody designs by predicted success in a surface plasmon
resonance (SPR) assay, an industry standard assay used to measure binding affinity.

2 Background

Problem set-up As shown in Figure 1, inverse folding models design candidate sequences given a
desired backbone structure. A subset of these sequences will fold into a 3D structure in vitro, and a
smaller subset then assume paratope residue conformations that interact strongly with the antigen [1].

Figure 1: Antibody-inverse folding model with antibody-antigen complex used as input predicts a set
of candidate CDR sequences. These sequences are then filtered at the sequence, undocked structure,
or docked structure level, which is the focus of this study. The HCDR3 sequences are from [6].

Here, we assess whether filtering at the sequence level, undocked structure level, or docked structure
level is effective. Particularly, we compare 8 different scoring paradigms on the binder vs non-binder
classification task. The candidate scoring paradigms we evaluate are all zero-shot methods – meaning
they are not trained on any binding affinity data which is often available in only limited quantities.

Related work In general protein binder design, in silico metrics have been used to filter libraries
and improve binder success rates. Most recently, it was shown that monomer metrics are less effective
in predicting binders than complex metrics [7]. On antibodies, prior work assesses Rosetta’s predicted
free energy of binding (∆∆G) as a binder scoring function and achieves an AUROC of 0.55 on
a library designed for HER2 [8]. Recently, a diffusion model was trained to assess the quality of
antibody designs by generating and scoring docked poses [9]. Language models have also been used
to perform efficient evolution on antibodies, indicating that their likelihoods can be used to select
predicted binders [10]. We assess whether such approaches are effective, given novel wet-lab insight.

3 Methods

Data To generate the antibody libraries scored in this work, an antibody-specific inverse folding
model was given an antibody-antigen complex backbone structure, antibody framework sequences,
and antigen sequence as input. The model was then used to design several candidate antibody
sequences, specifically all three HCDRs of a reference antibody to the antigen of interest. Libraries
were designed for 5 different antigens, and wet-lab data was generated by SPR. A future publication
will describe additional details on data generation. See Table 2 for details on library size and %
binders.

Candidate scoring functions Table 1 describes the 8 candidate scoring functions we evaluate on
the binder classification task. We hypothesize that antibody candidate sequences that contain common
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or predictable motifs are more likely to be binders. Therefore, we benchmark pseudo-perplexity
predicted by the ESM-2 650M parameter model as a sequence scoring metric [11]. Pseudo-perplexity
was computed for each sequence, scaled by min-max normalization, flipped to range [-1,0], and
translated to range [0,1]. All scoring paradigms going forward are normalized in a similar manner.
Subsequently, we hypothesize that antibody candidates with biologically plausible structural qualities
are more likely to be successful binders. As an undocked structure scoring metric, we benchmark
the residue-level confidence scores given by ABodyBuilder2 (ABB2), an antibody-specific folding
model [12].

Other discriminative scoring functions used in-practice are self-consistency metrics, such as similarity
between the folded antibody candidate and the input backbone structure [5]. Here, we benchmark
root mean square deviation (RMSD) as a similarity measure, under three Kabsch alignments [13].

Given that flexible interactions between antibody and antigen is critical for binding, we benchmark
metrics on flexibly docked complexes. To generate these complexes, we apply a previously proposed
architecture, dyMEAN [14], and make several modifications to the training procedure which are
described in the Appendix. We evaluate three scoring paradigms on the predicted complexes, selected
because they capture established heuristics on antibody-antigen interactions. The scores we evaluate
measure interface proximity, contact proximity, and interface interactions (details in Appendix).

Model/Method Metric

Sequence Only ESM Pseudo-Perplexity

Undocked Structure

ABodyBuilder2 Residue-Level Model Confidence
Antibody-Aligned Antibody RMSD

All HCDR-Aligned Antibody RMSD
HCDR3-Aligned Antibody RMSD

Docked Complex
Modified dyMEAN Interface Proximity
Modified dyMEAN Contact Proximity
Modified dyMEAN Interface Interactions

Table 1: Evaluation of 8 candidate scoring functions on the binder classification task across 3 classes
of metrics: sequence only, undocked structure, and docked complex.

4 Results

We assess the performance of each scoring paradigm in the classification setting, evaluating across
multiple antigens. Figure 2 shows each scoring function’s distribution of AUROC values. We
observe that antibody-aligned RMSD performs the best (mean of 0.65 and standard deviation of
0.15), indicating that undocked structure filtering may be effective. However, all three of the RMSD-
based undocked structure metrics display high variance in performance. Interface proximity is the
most consistent metric (mean 0.51 and standard deviation 0.028), followed by contact proximity and
interface interactions. This reveals that docked complex metrics exhibit less variability.

After evaluating the performance of each metric individually, we assess whether we can achieve better
discrimination with a combined scoring paradigm. Since the scoring functions are not strongly corre-
lated, as shown in the Appendix, we hypothesize that a combined method may boost performance.

For any linear combination of metrics, we fit coefficients on 4 out of 5 antigens, where our objective
is mean AUROC. We do not consider combinations whose standard deviation exceeds 0.1. To avoid
leakage, we evaluate the best-performing ensemble score on the held-out antigen. We call this
approach “Best Combination on Hold-Out,” and report retrieval precision on the task of filtering to
10% of the original antibody design library’s size in Figure 3. Retrieval precision, or Precision @ K,
measures the proportion of true binders in the top K highest-scoring candidates. Retrieval precision
and recall curves for the individual scoring metrics are given in the Appendix. We also evaluate
performance on an oracle approach where we find the best ensemble score on all 5 antigens, which
we refer to “Best Combination on All.” Our baseline is given by the binder percentage in each of the
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Figure 2: Distribution of AUROC values for various scoring functions across 5 antigens.

libraries, and performance of the best individual metric (antibody-aligned RMSD) is also shown for
comparison.

We observe that ensembling does not improve performance. However, the standard deviation of the
hold-out ensemble scores is 0.074, compared to 0.22 for antibody-aligned RMSD. This indicates that
ensembling is more robust to antigen variation. Additionally, the hold-out ensemble scores are just
2.9 percentage points below the oracle for retrieval precision, revealing that we cannot perform better
on this classification task using these scoring criteria. This underscores the need for better prediction
methods beyond those evaluated here. We find that in almost all folds, interface proximity has the
highest weight. The specific weights are given in the Appendix. This reveals that flexible docking
information is critical for this task, and better antibody-antigen docking models can push the needle.

Figure 3: Distribution of Precision @ 10% for ensemble scores and baselines across 5 antigens.
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5 Conclusions

This study provides experimental insight to show that there is no one-size-fits-all approach for
antibody assessment, and current open-source tools are insufficient to reliably filter diverse antibody
libraries. We learn that antibody-aligned RMSD outperforms other individual scoring paradigms.
However, sequence and undocked structure-only scoring paradigms struggle to handle antigen
variation, and metrics that use antigen information are more robust. We find that linear combinations
of the individual scoring paradigms exhibit lower variance in performance but leave much to be
desired. Improved flexible docking models and further experimental benchmark efforts are critical to
identify promising antibody candidates in silico and accelerate their clinical development.
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A Dataset details

Table 2 shows the number of screened antibodies and the percentage of binding antibodies for each
library.

Antigen #1 Antigen #2 Antigen #3 Antigen #4 Antigen #5
# of Sequences 64 56 68 68 58

# of Binders 9 15 10 6 14

% Binders 14.1 26.8 14.7 8.8 24.1

Table 2: Five libraries, each designed and screened against one of five antigens using surface plasmon
resonance (SPR), are used as experimental data in this study. Each library consists of between 56 and
68 unique sequences with between 8.8% and 24.1% of the sequences binding to their target antigen.

B dyMEAN training

We make the following modifications to the training procedure of dyMEAN. While we train on the
Structural Antibody Database [15] as in the original dyMEAN paper, we split SAbDab into training
and validation sets according to clusters formed by complexes sharing ≥ 40% antigen sequence
similarity. The clusters containing any of the 5 evaluation antigens were dropped from both training
and validation. Additionally, we use OpenMM [16] to relax the bound antigen structures before
model input to ensure that we are not leaking information about docked position. Finally, we provide
the model with relaxed ABB2-predicted antibody structures to focus on learning flexible docking
rather than folding.

C Docked complex scoring paradigms

We benchmark three scoring functions computed on docked complexes predicted by dyMEAN. The
first is an interface proximity score which gives the average distance between the residues on the
antibody interface and their nearest corresponding antigen residues. Here, we define interface as
the contiguous region between the first residue of HCDR1 to the last residue of HCDR3, including
HFWR2 and HFWR3. Residue-residue distances are computed as minimum distance between the
side chain atoms of both residues. We also compute a contact proximity score which computes the
same score on just the antibody contact residues which are defined as having at least one side chain
atom within 5 Angstroms of an antigen atom.

Lastly, we compute an interface interactions score which evaluates the types of interactions at the
antibody-antigen interface. We begin by identifying all antibody-antigen residue pairs where an
antibody residue atom is within at most 3 Angstroms of an antigen residue atom. We then classify
each residue-residue pair, awarding higher scores to polar-polar interactions, nonpolar-nonpolar Van
der Waals interactions, positive-negative ionic interactions, and aromatic stacking interactions.

D Correlation analysis

Figure 4 shows correlations between the 8 scoring paradigms. Correlation coefficients were computed
on all pairs of each antigen’s set of scores, and these coefficients were averaged across all 5 targets. As
expected, the RMSD-based undocked structure metrics exhibit some correlation, and the metrics com-
puted on flexibly docked complexes are also correlated. With the exception of ESM pseudo-perplexity
and ABB2 pRMSD, which are weakly correlated, we do not observe much correlation across the
sequence, undocked structure, and docked complex metric groups. Therefore, we hypothesize that
combining individual metrics may reveal new information useful for binder classification.
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Figure 4: Correlations between the 8 scoring paradigms, averaged across antigens, show that each
metric is capturing fairly different signal. Combining metrics could yield favorable performance.

E Retrieval precision and recall

Retrieval precision and recall metrics are particularly relevant because we can measure the number of
true binders amongst the K we may select to test in the lab, while ensuring that a high proportion
of binders are not missed. Precision @ K measures the proportion of true binders in the top K
highest-scoring candidates, and Recall @ K measures the proportion of relevant items in the top
K. We evaluate retrieval precision and recall values for each scoring function averaged across the
5 antigens, as shown in Figure 5. We focus on the task of filtering to 10% of the original antibody
design library’s size. We observe that antibody-aligned RMSD has the highest Precision @ 10%
with a value of 0.26, averaged across antigens, compared to a baseline mean binder rate of 0.13.
Antibody-aligned RMSD also has the highest retrieval recall of 0.16 at this threshold.

Figure 5: The retrieval precision and recall curves, averaged across antigens, show how effectively
the different scoring paradigms can select K designs. At a threshold of 10%, which is approximately
K = 6, antibody-aligned RMSD displays the best retrieval precision and recall.
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F Combined scoring function weights

In Table 3, we report the coefficients found when each group of 4 antigens was used for optimization.

Held-out Antigen Metric 1 Metric 2 Metric 3
Antigen #1 Interface Proximity, 0.7 Contact Proximity, 0.2 Interface Interactions, 0.1
Antigen #2 Antibody-Aligned RMSD, 0.5 Interface Interactions, 0.4 ESM Pseudo-Perplexity, 0.1
Antigen #3 Interface Proximity, 0.7 Contact Proximity, 0.2 Interface Interactions, 0.1
Antigen #4 Interface Proximity, 0.7 Contact Proximity, 0.2 Interface Interactions, 0.1
Antigen #5 Interface Proximity, 0.7 ESM Pseudo-Perplexity, 0.2 Contact Proximity, 0.1

Oracle Interface Proximity, 0.6 Contact Proximity, 0.3 HCDR3-Aligned RMSD, 0.1

Table 3: Best weighted ensemble scores for each of the 5 folds, as measured by mean AUROC.
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