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Abstract

Accurate drug target affinity prediction can improve drug candidate selection, accel-
erate the drug discovery process, and reduce drug production costs. Previous work
focused on traditional fingerprints or used features extracted based on the amino
acid sequence in the protein, ignoring its 3D structure which affects its binding
affinity. In this work, we propose GraphPrint: a framework for incorporating 3D
protein structure features for drug target affinity prediction. We generate graph
representations for protein 3D structures using amino acid residue location coordi-
nates and combine them with drug graph representation and traditional features
to jointly learn drug target affinity. Our model achieves a mean square error of
0.1378 and a concordance index of 0.8929 on the KIBA dataset and improves
over using traditional protein features alone. Our ablation study shows that the 3D
protein structure-based features provide information complementary to traditional
features.

1 Introduction

Predicting drug and target affinity (DTA) can improve drug candidate selection, accelerate drug
discovery duration, and reduce drug production costs, repurposing existing drugs (1). Different
techniques such as molecular coupling (2; 3; 4), similarity-based methods, (6; 7), network-based
methods (8), and deep learning-based methods. Deep learning methods have been used to perform
DTA, and have gained popularity in recent times as they can have higher accuracy and lower prediction
time. (9; 10; 11; 12; 17)

Existing deep learning-based methods use amino acid residue sequences in protein to extract features
directly or learn feature extractors. (9; 10; 11; 12; 17). The amino acid sequence can be of primary,
secondary, tertiary, and sometimes quaternary structure, as shown in figure 1. The primary structure
consists of a sequence of amino acids, and the secondary structure represents the alpha-helical or
beta-sheet structure. The tertiary structure consists of folding the chain itself, leading to a 3D structure.
Proteins with more than one peptide sequence can have additional folding among each other, leading
to a quaternary structure. These higher structures affect the bindings and docking sites of these
proteins. Incorporating the 3D structure of a protein can help improve performance on tasks such as
drug target affinity prediction. With the advent of accurate 3D protein structure prediction (5), it is
now possible to predict the 3D structure of proteins based on amino acid sequence. With the growing
size of the 3D protein structure database, incorporating 3D features to learn drug-related features can
be a new direction to explore in the field of drug discovery.

DTA has been framed as a binary classification and regression problem. In binary classification,
binary labels 0 and 1 are predicted. In a regression problem, drug-target affinity is quantified as a
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regression task, which can be used to rank drug targets in order of their binding affinity. This can be
important for selecting only a limited number of drug candidates for further investigation in the lab.

In this work, we propose a graph neural network-based architecture to learn features based on the 3D
structure of proteins. More specifically, our contributions are:

1. We propose GraphPrint, a framework to integrate 3D protein structural representation to
learn features using graph neural networks.

2. We perform an ablation study to show that the 3D structure of protein provides complemen-
tary information to traditional handcrafted features.

3. We share a curated version of the KIBA dataset along with its 3D protein structure to help
future works.

Figure 1: Protein structure can be visualized at several levels. The primary structure involves the
structure of amino acids in proteins. The secondary structure involves the formation of helix and
sheet structures. The tertiary structure involves the folding of the amino acid chain into a 3D space.
Proteins with more than one peptide chain can have a quaternary structure, which involves further
folding of chains over each other.

2 Related works

Different techniques such as molecular coupling (2; 3; 4), similarity-based methods, (6; 7), network-
based methods (8), and deep learning-based methods. Deep learning methods have increasingly been
used for drug target affinity prediction. Table 1 shows some of the previous state-of-the-art models
and their backbone architecture. DeepDTA(9) was one of the first deep learning-based architectures
for DTA tasks. The authors used 1D convolution to embed the drug’s SMILES representation and
protein sequence separately, followed by concatenation and classifier training.

To improve feature extraction, graph neural network-based architectures have been proposed.
GraphDTA(10) is one such earlier work, to use graph neural networks to learn a drug structure
representation, combined with CNN for protein sequence. iEdgeDTA () treats protein sequence as a
1d graph and uses graph convolutional layers to extract protein features, combined with edge-graph
convolutional for drug embeddings. BiCompDTA use normalized compression distance and Smith-
Waterman measures to generate protein embeddings, that is later used to train deep learning network.
Table 1 summarizes the architecture and input data representations used in these methods.

Most previous works treat protein as a sequence of amino acids to either extract hand-crafted features
or learn embeddings using neural network-based architectures. This work ignores the secondary,
tertiary, or quaternary structure of proteins. These higher structures affect the bindings and docking
sites of these proteins. Incorporating the 3D structure of a protein can help improve performance on
tasks such as drug target affinity prediction. With recent works like Alphafold (5), it is now possible
to predict 3D structures of proteins using their aminoacid sequence.

3 Methods

In this section, we describe a framework for a graph representation of protein 3D structure and our
architecture, followed by the data set details.
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Figure 2: Diagram showing pipeline for feature extraction for protein using Aplhafold (5) and
architecture for GraphPrint, with multihead architecture containing graph isomorphic convolution
layers (GINCONV) and 1D convolutional blocks, followed by concatenation of features into a
multilayer perceptron as a classifier.

Table 1: Previous work for drug target affinity prediction, along with their architectures and inputs
used. Keywords: NCD= Normalised compression distance.

Protein Drug
Model Year Input Backbone Input Backbone

DeepDTA 2018 AA sequence CNN SMILES CNN
GraphDTA 2020 AA sequence CNN SMILES GNN
iEdgeDTA 2023 AA sequence 1D-GCN SMILES Edge-GCN
BiComp-DTA 2023 AA sequence NCD features SMILES CNN

3.1 Architecture

We explore a multimodality approach by using a multi-head network to learn protein/drug embeddings
directly from their structure as well as their extracted fingerprints. This allows the model to leverage
the complementary information in these representations.

We create a multihead neural network consisting of four branches. We use a graph convolution-based
network for graph representations of proteins/drugs. For fingerprints, we use 1D convolutional blocks
to learn embeddings. Figure 2 shows a pictorial representation of the architecture used.

Mathematically, for any drug molecule Di and protein sequence Pi, we learn a model Fc, as shown
in equation 1, where FPG

, FPF
, FDG

, FDF
represent branches PG, PF , DG, DF of the architecture,

respectively. The output from three branches is concatenated, before passing through the classifier
Fc, generating a final prediction of the affinity score yi.

yi = Fc([concat(FPG
(Pi), FPF

(Pi), FDG
(Di), FDF

(Di)]) (1)

Branch PG and DG consist of 5 graph blocks in series, followed by a global pool average and a
linear block. This helps to extract graph-level feature embeddings from the drug molecule. We add
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bottlenecks in the architecture to improve the information transfer enforcing model to learn efficient
information on embedding information on embedding and lower parameter size. The branches
PF and DF consist of a 1D convolutional layer and a linear layer. Outputs from all branches are
concatenated and passed through fully connected layers to generate the final affinity score.
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Figure 3: Protein graph representation: We calculate the center of mass of the amino acid and use this
as a center of mass for the amino acid residue. Each residue represents a node, with node features
containing position and amino acid properties.

3.1.1 Graph embeedings

To generate protein graph representations, we use Alphafold () to generate the 3D protein structure
of each protein target. Using the 3D structure, we define each amino acid residue as a node. We
use the residue’s coordinates of the center of mass to represent amino acids. We add additional
features, such as amino acid encoding, molecular weight, polarity, solubility, and pKa values, to each
node feature. Figure 3 shows the creation of graph representation for protein structure. For drugs,
we convert the SMILES string into a molecular graph representation using the open-source library
RDKit(21). Atoms are represented as nodes, and the bonds between them are represented as edges.
For node embeddings, we use one-hot encodings of atom type, number of neighboring atoms, number
of neighboring hydrogens (explicit and implicit), and implicit valence and aromaticity of molecule.

3.1.2 Fingerprint extraction

We extract traditional hand-designed features to augment the graph representation. We choose AAC,
Conjoint triad fingerprint, and quasi-sequence fingerprint, as they only require the protein’s amino
acid sequence to acquire. AAC encodes k-mers of amino acids into an 8,420-length bit vector. It
can contain sequence neighborhood (local) information. The conjoint triad fingerprint utilizes a
hand-made 7-letter alphabet to encode a continuous frequency distribution of three amino acids.
This transforms the protein into a homogeneous vector space of a 343-length vector. The quasi-
sequence fingerprint contains a residue pair correlation within its 100-length vector. All three of these
representations are concatenated before being passed to the network. We use the open-source library
iFeature (20) to calculate protein representations.

For drug molecules, we extract Morgan and Daylight fingerprints using the drug SMILES sequence,
generating output of size 1024 and 2048 respectively. Morgan’s fingerprint encodes circular radius-2
substructures of a molecule with a 1024-length bit vector. This includes partially disambiguated atom
identifiers. The daylight fingerprint encodes path-based substructures into a 2048-length bit vector.
We use the Therapeutics Data Commons (TDC) open-source library(22) to calculate these features.

3.2 Datasets

In this work, we use the KIBA dataset for evaluation (19). The KIBA dataset contains an affinity
score that combines Kd, an inhibitor constant (Ki), and the half maximum inhibition concentration
(IC50). For comparison with previous works, we use a similar dataset generated by filtering all the
drug-protein combinations with fewer than 10 interactions. The final dataset contains a total of 2,111
drugs and 229 proteins. The KIBA score ranges from 0.0 to 17.2 and a larger score represents a
weaker binding affinity.
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3.3 Evaluation

After model training is complete, we freeze the architecture and measure the performance on the
test set. We will use the following metrics: Mean Squared Error (MSE) as defined as MSE =
1
n

∑n
i=1(Pi−Yi)

2, where n is the number of data points, P are the predicted affinity values, and Y are
the expected affinity values. Lower MSE is better. Concordance Index (CI): (9) compares the predicted
order of the binding affinity values corresponding to drug-target interactions with ground truth. CI
values greater than 0.8 indicate a strong model. It is defined as CI = 1

Z

∑
yi>yj

h(pi − pj), where
h(x) =

{
1&x > 0, 0.5&x = 0, 0&x < 0 . r2m metric: measures external prediction performance

of Quantitative structure-activity relationship (QSAR) models. This metric is defined as r2m =

r2 ∗
(
1 −

√
r2 − r20

)
, where r2 is the squared correlation coefficient with intercept, and r20 is

without intercept. A value above 0.5 is good. Spearman correlation measures if two variables are
monotonically related, as defined by Spearman = 1− 6

∑
(Pi−Yi)

2

n(n2−1) . Pearson Correlation: a measure

of the linear correlation between two variables, as defined by: Pearson = cov(P,Y )
σPσY

.

We explore the ablation of branches to understand their contributions to the learning of our architecture.
We remove one layer at a time and report the metrics of the modified architecture. We also explore
errors contributed by individual drugs and proteins to the overall error, by plotting the sum of MAE
error per drug or protein.

4 Results and Discussion

In this study, we evaluate our trained model on the test subset of the KIBA dataset and compare it to
previously reported baselines. Table 2 shows a comparison of the performance metrics of our models
with DeepDTa, GraphDTA, iEdgeDTA, and BiCompDTA. Our model achieved 0.3713 RMSE, 0.1378
MSE, 0.8929 CI, Spearman correlation of 0.8852, and Pearson correlation of 0.8920. Our model
results are competitive against state-of-the-art models.

Table 2: Performance metrics our architecture with comparison to previous work on KIBA test dataset.
Keywords: RMSE=root mean square, MSE= mean square error, CI=conformance index

Model RMSE MSE CI Spearman Pearson Epochs
DeepDTA — 0.194 0.863 — — -
GraphDTA — 0.139 0.891 — — 1000
iEdgeDTA — 0.139 0.89 — — -
BiComp-DTA — 0.167 0.891 — — -
Ours (PG,PF ,DG) 0.3926 0.1542 0.8790 0.8632 0.8748 300
Ours (PG,PF ,DG,DF ) 0.3713 0.1378 0.8929 0.8852 0.892 300

We look into the MAE error contribution of individual proteins and drugs to the overall model
MAE error. Figure 4a plots the sum of errors for each protein and drug molecule. As shown in the
figure, only a small number of protein and drug molecules are responsible for the majority of errors.
Figure 5a, 5b, 5c show scatterplot for the sum of error contribution per drug vs a number of drugs
atom counts, aromatic atoms and bonds respectively. We can see that there is a linear relation with
increasing atom count making drug affinity prediction harder. The same goes for the number of
aromatic and number of bonds.

4.1 Ablation study

We perform architecture ablations by removing one or more branches of the network. At each
stage, the model receives one of the two embeddings for both protein and drug. Table 3 shows
ablation results for our architecture. All the ablations have lower performance compared to our main
architecture. Removing branch PG causes a dip in the concordance index and an increase in the
MSE score. This supports our hypothesis that 3D structure provides complementary information
to traditional hand-crafted fingerprints. Further, replacing simple architecture with a bottleneck
architecture causes an increase of 1.3% in the concordance index.
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Table 3: Ablations results on different branches of our architecture on KIBA Dataset. Removing
branch PG causes a dip in the concordance index, suggesting the complementary nature of 3D
structure to traditional hand-crafted fingerprints.

Removed Branch CI RMSE MSE Spearman Pearson
- 0.8929 0.3713 0.1378 0.8852 0.892
PG 0.8911 0.3740 0.1399 0.8824 0.8899
DG 0.8902 0.3716 0.1381 0.8924 0.8825
PF 0.8820 0.3857 0.1488 0.8838 0.8746
DF 0.8790 0.3926 0.1542 0.8632 0.8748
DF , PF 0.8783 0.3938 0.1551 0.8626 0.8736
DF , PG 0.8699 0.4104 0.168 0.8549 0.868
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Figure 4: Error breakdown based on drug ID, protein ID, aromatic compounds in drugs, bonds inside
drug. A small amount of drugs and proteins contribute the most amount of error.

4.2 Limitations and Future work

There are a few limitations to improve on. Since the generation of 3D structures is a computationally
expensive process, we present our results only on the KIBA dataset. More evaluation on multiple
datasets is required for a more comprehensive evaluation. In this work, we focus on integrating 3D
protein structure representation, we do not perform extensively on graph neural architecture. Using
more recent architecture with attention can provide further boost performance. In the future, this
work can be further extended and directly implement an explainability layer, pointing to amino acid
regions interacting with drugs. It would be worthwhile to quantify error-contributing correlations in
protein structures, as understanding the reasoning behind this might also lead to the development of
better model architectures.

5 Conclusion

In conclusion, our GraphPrint framework is a novel approach for drug target affinity prediction that
leverages 3D protein structure features in addition to traditional protein and drug representations. We
have demonstrated the potential of our model in improving drug candidate selection, accelerating
drug discovery, and reducing production costs. By incorporating protein 3D structure information,
our model achieved a mean square error of 0.1378 and a concordance index of 0.8929 on the KIBA
dataset, surpassing the performance of models that rely solely on traditional protein features.

With the advent of accurate 3D protein structure prediction and increasing 3D protein databases,
incorporating 3D protein structure for drug target affinity and other approaches can be a new direction
to explore in the field of drug discovery and multimodal learning. This research not only enhances our
understanding of drug-target interactions but also holds promise for more efficient and cost-effective
drug development processes in the future. Further exploration and refinement of our model may pave
the way for even more accurate predictions in this critical area of pharmaceutical research.
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Figure 5: Scatter plots showing the mse error contribution vs. different parameters. There is a linear
relation between the number of atoms, aromatic atoms, and bonds to the error contribution of the
respective drug molecule.
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