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Abstract

Contextual bandits constitute a classical framework for decision-making under
uncertainty. In this setting, the goal is to learn prescriptions of highest reward
subject to the contextual information, while the unknown reward parameters of
each prescription need to be learned by experimenting it. Accordingly, a funda-
mental problem is that of balancing exploration (i.e., prescribing different options
to learn the parameters), versus exploitation (i.e., sticking with the best option to
gain reward). To study this problem, the existing literature mostly considers per-
fectly observed contexts. However, the setting of partially observed contexts re-
mains unexplored to date, despite being theoretically more general and practically
more versatile. We study bandit policies for learning to select optimal prescrip-
tions based on observations, which are noisy linear functions of the unobserved
context vectors. Our theoretical analysis shows that the Thompson sampling pol-
icy successfully balances exploration and exploitation. Specifically, we establish
(i) regret bounds that grow poly-logarithmically with time, (ii) square-root con-
sistency of parameter estimation, and (iii) scaling with other quantities including
dimensions and number of options. Extensive numerical experiments with both
real and synthetic data are presented as well, corroborating the efficacy of Thomp-
son sampling. To establish the results, we utilize concentration inequalities for
dependent data and also develop novel probabilistic bounds for time-varying sub-
optimality gaps, among others. These techniques pave the road towards studying
similar problems.

1 Introduction

Contextual bandits have emerged in the recent literature as widely-used decision-making models
involving time-varying information. In this setup, a policy takes action after (perfectly or partially)
observing the context(s) at each time. The data collected thus far is utilized, aiming to maximize
cumulative rewards determined by both the context(s) and unknown parameters. So, any desirable
policy needs to manage the delicate trade-off between learning the best (i.e., exploration) and earn-
ing the most (i.e., exploitation). For this purpose, Thompson sampling stands-out among various
competitive algorithms, thanks to its strong performance as well as computationally favorable im-
plementations. Its main idea is to explore based on samples from a data-driven posterior belief about
the unknown parameters. However, comprehensive studies are currently missing for imperfectly ob-
served contexts, and it is adopted as the focus of this work.

Letting the time-varying components of the decision options (e.g., contexts) to be observed only
partially, is known to be advantageous. More specifically, in various real-world problems including
robot control and image processing [1–6], partial, transformed, or noisy signal-observation models
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have been used traditionally to obtain better performance. On the other hand, overlooking imperfect-
ness of observations can lead to compromised decisions. For example, if disregarding uncertainty
in medical profiles of septic patients, clinical decisions end up with worse consequences [7]. Ac-
cordingly, partial observation models are studied in canonical settings such as linear systems [8],
bandit monitoring [9–11], and Markov decision processes [12, 13]. The above have recently moti-
vated some work on contextual bandit policies with partially observed contexts [14–16]. However,
a reliable policy that can provably balance exploration and exploitation is not currently available, as
will be elaborated shortly, after clarifying the technical setting and reviewing the literature.

The common bandit setting is the so-called linear one, where the expected reward of each arm is the
inner product of context(s) and reward parameter(s). The latter can be either arm-specific [17, 18], or
shared across all arms [19, 20]. We consider a framework for capturing both settings, with the focus
being on the more general and challenging one of the former. Moreover, similar to the above refer-
ences, we assume that there are finitely many arms to choose from. For the sake of completeness, the
authors also refer to a (non-exhaustive) variety of extant approaches in the realm of contextual ban-
dits. That includes (possibly infinite but bounded) action sets in a Euclidean space [21, 20], as well
as those with adversarial contexts [19, 22], together with non-linear or non-parametric reward func-
tions [23–25]. Notably, all of these references assume fully observed contexts, in contradistinction
to this work.

The discourse of efficient policies for contextual bandits has come a long way. Algorithms based
on Optimism in the Face of Uncertainty (OFU) [26, 19, 21] held prominent positions and afterward
was followed by Thompson sampling with its excelling empirical performance [27] and then sup-
plemented with theoretical analysis [17, 28, 20]. More recently, Greedy policies have been shown
to be nearly optimal under particular settings [29, 16], though, it is known that vanilla Greedy al-
gorithms incur a linear regret under the arm-specific reward parameter setup [30]. That is caused,
intuitively, by superior arms dominating some others, leaving them unexplored, and is also illus-
trated in our experiments at the end of this paper. Accordingly, the study of theoretical performance
guarantees for Thompson sampling has gained much popularity and made significant progress in
the recent literature. First, regret bounds growing as square-root of time were shown [17, 28, 20],
succeeded by logarithmic regret in setting with a shared reward parameter under parameter sparsity
[31] and partial observability of contexts [14, 15]. However, for the general case (that each arm has
a possibly distinct reward parameter), the efficiency of bandit policies remains unanswered. Indeed,
the analysis is more challenging in such settings as the policy needs to address the trade-off be-
tween exploration and exploitation, unlike the setting with a shared reward parameter. The problem
constitutes the focus of this paper.

We analyze the Thompson sampling policy in contextual bandits with partially observable stochas-
tic contexts. Our analysis indicates that the error in estimating the reward parameters decays with
square-root of time, and the worst-case regret grows at most as fast as the fourth power of the
logarithm of time. For regret analysis in contextual bandits, it is crucial to examine the inter-
dependencies of variables associated with regret. To address this issue, we delicately construct
stochastic processes with self-normalized or martingale structures, and employ useful stochastic
bounds for them.

The organization is outlined below. In Section 2, we formulate the problem and discuss preliminaries.
Next, Thompson sampling policy for partially observable contextual bandits is presented in Section
3. We provide its theoretical performance guarantees in Section 4, followed by real-data experiments
in Section 5. The paper is wrapped by final remarks and future directions.

2 Problem Formulation

In this section, we express the technicalities of the partially observable linear contextual bandit
problem. The decision-maker tries to maximize their cumulative reward by selecting from N arms,
the reward of arm i ∈ {1, · · · , N} being

ri(t) = x(t)⊤Jiµ⋆ + εi(t), (1)

where x(t) is the unobserved dx dimensional stochastic context generated independently at time t
with E [x(t)] = 0dx

and Cov(x(t)) = Σx, µ⋆ is the reward parameter in R
dµ , Ji is the (dx × dµ)

dimensional weight matrix of the ith arm, and εi(t) is the reward sub-Gaussian noise satisfying there
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exist a fixed positive constant R1 such that

E

[
eλεi(t)

]
≤ exp

(
λ2R2

1

2

)
, ∀ λ > 0. (2)

The decision-making policy observes y(t); a transformed noisy function of the context

y(t) = Ax(t) + ξ(t), (3)

where A is a dy × dx sensing matrix, and ξ(t) is the sensing (or measurement) noise, its covari-
ance matrix being denoted by Σy . We suppose that each element of ξ(t) is sub-Gaussian as well,
and (without loss of generality) satisfies an inequality just similar to (2). At each time t, the
decision-maker chooses an arm, denoted by a(t), given the history of actions {a(τ)}1≤τ≤t−1, re-
wards {ra(τ)(τ)}1≤τ≤t−1, and past observations {y(τ)}1≤τ≤t−1, as well as the current one y(t).
Once choosing the arm a(t), the decision-maker gets a reward ra(t)(t) according to (1). Note that
rewards of other arms are not realized.

Technically, the weight matrices are employed to represent different types of association between
the parameter µ⋆ and context x(t) for the reward of each arm. For the sake of simplicity in our
presentation and model design, we use the notation µ⋆ to represent the entire original parameter
related to all arms, whereas the parameter associated with arm i is denoted as Jiµ⋆.

Now, we look into the optimal arm identification. Based on (1), the optimal arm i maximizes
x(t)⊤Jiµ⋆. To find an approximate value of x(t)⊤Jiµ⋆, we utilize the information through y(t).
First, we estimate x(t)⊤Jiµ⋆ with known µ⋆ from the perspective of the optimal policy. We consider
an arbitrary linear combination of x(t), denoted by x(t)⊤µ, for a known vector µ ∈ R

dx and a
linear prediction b⊤y(t) of it. The linear prediction y(t)⊤b should be chosen so as to minimize the
variance of prediction error, Var(x(t)⊤µ − y(t)⊤b), subject to the condition that the predictor is
unbiased E

[
x(t)⊤µ− y(t)⊤b

]
= 0 based on (3). This linear prediction is called the Best Linear

Unbiased Prediction (BLUP) [32, 33], satisfying b = D⊤µ, which is invariant of the value of x(t),
where D = (A⊤Σ−1

y A+Σ−1
x )−1A⊤Σ−1

y . Accordingly, by plugging Jiµ⋆ into µ, we get the BLUP
of x(t)⊤Jiµ⋆, written as y(t)⊤D⊤Jiµ⋆. Similarly, Dy(t) is the BLUP of x(t), denoted by

x̂(t) := Dy(t). (4)

Next, we examine the estimation of x(t)⊤Jiµ⋆ from the perspective of a decision-maker, who does
not know the true value of µ⋆. From (1), we get

ri(t) = y(t)⊤D⊤Jiµ⋆ + ζi(t), (5)

where ζi(t) = (x(t)⊤Jiµ⋆ − y(t)⊤D⊤Jiµ⋆) + εi(t) is a noise centered at 0. ζi(t) is independent
of others because of the independence of the prediction error, x(t)⊤Jiµ⋆ − y(t)⊤D⊤Jiµ⋆. Here,
Jiµ⋆ is not estimable based on the equation (5), since the space spanned by {Dy(τ)}tτ=1:a(τ)=i does

not generally include Jiµ⋆, if dy < dx. Thus, instead of Jiµ⋆, we estimate D⊤Jiµ⋆ defined as the
transformed parameter of the arm i, denoted by

ηi := D⊤Jiµ⋆. (6)

Thus, using (5) and (6), we get

ri(t) = y(t)⊤ηi + ζi(t). (7)

Despite the inestimability of Jiµ⋆, ηi is always guaranteed to be estimable because {y(τ)}tτ=1:a(τ)=i

span R
dy , thanks to the full rank Var(y(t)). Given that even the optimal policy cannot make a

better unbiased prediction of x(t)⊤Jiµ⋆ than the BLUP y(t)⊤ηi by taking advantage of any other
information, the optimal arm at time t is given as

a⋆(t) = argmax
1≤i≤N

y(t)⊤ηi. (8)

Regret is a performance measure, quantifying the cumulative reward decrease by the actions of a
decision-maker as compared to the actions taken by the optimal policy. In accordance with the
optimal arm in (8), regret is expressed as

Regret(T ) =

T∑

t=1

y(t)⊤
(
ηa⋆(t) − ηa(t)

)
, (9)
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where a(t) is the chosen arm by the decision maker at time t.

Now, we describe contextual bandits with arm-specific parameters in terms of weight matrices
{Ji}Ni=1. For the presentation of arm-specific parameters and contexts, we use the notations µ⋆ =
[µ⊤

⋆1, µ
⊤
⋆2, . . . , µ

⊤
⋆N ]⊤ for arm-specific parameters, and x(t) = [x1(t)

⊤, x2(t)
⊤, . . . , xN (t)⊤]⊤ for

arm-specific contexts. Herein, ‘parameters’ indicate transformed parameters {ηi}Ni=1 defined in (6),
while ‘original parameter‘ represents µ⋆. Reward functions can have two different types of contexts:
shared and arm-specific type.

Shared Context: First, we illustrate the canonical model with arm-specific parameters and a shared
context. For this framework, the weight matrices have the following form

Ji =


0dx×dx

· · · 0dx×dx
Idx︸︷︷︸
ith

0dx×dx
· · · 0dx×dx


 , i ∈ [N ]. (10)

Ji selects µ⋆i from µ⋆ =
[
µ⊤
⋆1, µ

⊤
⋆2, . . . , µ

⊤
⋆N

]⊤
by a linear transformation, which means Jiµ⋆ =

µ⋆i. Accordingly, Ji satisfies the following equations: x(t)⊤Jiµ⋆ = x(t)⊤µ⋆i.

Arm-specific Contexts: Second, the other canonical model with arm-specific parameters consists
of arm-specific contexts. For this model, Ji is a block diagonal matrix such that

Ji = diag


0dµ0

×dµ0
, · · · ,0dµ0

×dµ0
, Idµ0︸︷︷︸

ith

, 0dµ0
×dµ0

, · · · 0dµ0
×dµ0


 , i ∈ [N ], (11)

where dµ0
= dµ/N is the dimension of an arm-specific parameter, µ⋆i. Here, Jiµ⋆ are 0 except for

the ith dµ0
elements, which is µ⋆i. Correspondingly, Ji satisfies x(t)⊤Jiµ⋆ = xi(t)

⊤µ⋆i.

3 Thompson Sampling Policy

In this section, we outline the Thompson sampling algorithm for partially observable contextual
bandits. Thompson sampling takes action as if samples generated from a posterior distribution given
the data thus far are the true values. In order to calculate a (hypothetical) posterior distribution, a
decision-maker assumes that the reward of the ith arm at time t is generated as follows: ri(t) =
y(t)⊤D⊤Jiµ⋆ + ψi(t), where ψi(t) has the normal distribution with the mean 0 and variance v2 =
R2

1 for R1 defined in (2). In the beginning, the decision-maker starts with the initial value µ̂(1) =
0dµ

and B(1) = Idµ
, which are the mean and (unscaled) covariance matrix of a prior distribution

of µ⋆, respectively. The posterior distribution of µ⋆ at time t is given as N (µ̂(t), v2B(t)−1). By
taking advantage of the posterior distribution of µ⋆ and (6), we can derive the posterior distribution
of ηi, which is N (η̂i(t), v

2B+
i (t)), where

η̂i(t) = D⊤Jiµ̂(t), (12)

B+
i (t) = D⊤JiB(t)−1J⊤

i D. (13)

Then, we sample from the following posterior distribution of the transformed parameters ηi:

η̃i(t) ∼ N (η̂i(t), v
2B+

i (t)), (14)

for i = 1, 2 . . . , N . Accordingly, the decision-maker pulls the arm a(t) such that a(t) =
argmax
1≤i≤N

y(t)⊤η̃i(t). Then, once the decision-maker gains the reward of the chosen arm a(t), it

can update µ̂(t) and B(t) based on the recursions below:

B(t+ 1) = B(t) + J⊤
a(t)Dy(t)y(t)

⊤D⊤Ja(t), (15)

µ̂(t+ 1) = B(t+ 1)−1
(
B(t)µ̂(t) + J⊤

a(t)Dy(t)ra(t)(t)
)
. (16)
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Algorithm 1 : Thompson sampling algorithm for contextual bandits with imperfect context obser-
vations

1: Set B(1) = Idµ
, µ̂(1) = 0dµ

2: for t = 1, 2, . . . , do
3: for i = 1, 2, . . . , N do
4: Set η̂i(t) = D⊤Jiµ̂(t) and Bi(t) = D⊤JiB(t)J⊤

i D
5: Sample η̃i(t) from N (η̂i(t), v

2B+
i (t))

6: end for
7: Select arm a(t) = argmaxi∈[N ]y(t)

⊤η̃i(t)

8: Gain reward ra(t)(t) = x(t)⊤Ja(t)µ⋆ + εa(t)(t)
9: Update B(t+ 1) and µ̂(t+ 1) by (15) and (16)

10: end for

4 Theoretical Performance Analyses

In this section, we establish the theoretical results of Algorithm 1 for partially observable contextual
bandits with arm-specific parameters. For the following results, without loss of generality, we set
‖µ⋆‖ ≤ h and cµ = 1. To proceed, we define optimal probabilities.

Definition 1 (Optimal Probability). Let A⋆
i ∈ R

dy be the region in the space of y(t) that makes
arm i optimal: a⋆(t) = i. Then, denote the optimality probability arm i by pi = P(y(t) ∈ A⋆

i ) =
P(a⋆(t) = i).

Based on the above definition and Assumption 2 in Appendix B, we define a set A⋆
i and κ > 0 such

that, for A⋆
i , there exist a subset Ai ⊆ A⋆

i and κ > 0 such that

P(y(t) ∈ Ai) >
1

2
P(y(t) ∈ A⋆

i ) and P(ẏ(t)⊤(ηi − ηj) > κ|y(t) ∈ Ai) = 1, (17)

where κ is referred to a suboptimality gap with a positive probability, which is dependent on prob-
lems.

The following results provide estimation error bounds of the estimators defined in (12) and a high
probability regret upper bound for Algorithm 1. It is worth noting that the accuracy of parameter
estimation and regret growth are closely related because higher estimation accuracy leads to lower
regret. Thus, we build the accuracy of estimation first and then construct a regret bound based on
it. The first theorem presents the estimation error bound, which scales with the rate of the inverse of
the square root of t.

Theorem 1. Let ηi and η̂i(t) be the transformed true parameter in (6) and its estimate in (12),
respectively. Then, with probability at least 1− δ, Algorithm 1 guarantees

‖η̂i(t)− ηi‖2 = O
(
dµ
pit

log

(
dyT

δ

))
,

for all times t in the range τi < t ≤ T , where τi = O(p−1
i κ−2Ndµd

2
y log

3(TNdy/δ)) is the
minimum sample size.

The order of the minimum sample size is primarily due to the gap analysis involving κ and the trun-
cation of observations, which is necessary for the application of Azuma’s inequality. The estimation
accuracy above is established based on the result that Thompson sampling guarantees linear growth
of the number of selections of each arm over time with a high probability. Moving forward, the
following theorem demonstrates that the regret upper bound scales at most log4 T with respect to
the time thanks to the linear growths of square-root estimation accuracy.

Theorem 2. The regret of Algorithm 1 satisfies the following with probability at least 1− δ:

Regret(T ) = O
(

Ndµd
3
y

(p+min)
3/2κ2

log4
(
TNdy
δ

))
,

where p+min = mini∈[N ]:pi>0 pi.
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This theorem demonstrates that the regret scales at most log4 T with time, and with the rate
(p+min)

−3/2 with respect to the optimal probabilities defined in Definition 1. In addition, the term
N is caused by the use of the inclusion-exclusion formula to find the bound of the probability that
the optimal arm is not chosen. Next, the regret bound increases quadratically as the suboptimality
gap κ decreases. In addition, the truncation of observations incurs

√
dy log(TNdy/δ), which sub-

sequently leads to additional d2y log
2(TNdy/δ) by increasing the minimum sample size. Lastly, the

estimation error contributes to the regret growth with
√
dµ log(TNdy/δ).

The above results are unprecedented to the best of our knowledge. Especially, a high probability
poly-logarithmic regret bound of Thompson sampling with respect to the time horizon has not been
shown for stochastic contextual bandits with arm-specific parameters, even though the previously
available regret bounds are shown for Thompson sampling for adversarial contextual bandits [17]
and the greedy first algorithm for the stochastic contextual bandits [30].

5 Numerical Experiments
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Figure 1: Plots of Regret(t)/(log t)2 over time for the different dimensions of context at N = 5
and dy = 10, 20, 40, 80. The solid and dashed lines represent the average-case and worst-case regret
curves, respectively.

5.1 Simulation Experitments

In this sub-section, we numerically show the results in Section 4 with synthetic data. First, to explore
the relationships between the regret and dimension of observations and contexts, we simulate various
scenarios for the model with arm-specific parameters with N = 5 arms and different dimensions
of the observations dy = 10, 20, 40, 80 and context dimension dx = 10, 20, 40, 80. Each case
is repeated 50 times and the average and worst quantities amongst all 50 scenarios are reported.
Figure 1 illustrates regret normalized by (log t)2, which is the actual regret growth because (log t)2
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Figure 2: Plots of normalized estimation errors
√
t‖η̂i(t) − ηi‖ of Algorithm 1 over time for par-

tially observable stochastic contextual bandits with five arm-specific parameters and dimensions of
observations and contexts dy = 20, dx = 10, 20, 40.
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Figure 3: Plots of regrets over time with the different number of arms N = 10, 20, 30 for Thomson
sampling versus the Greedy algorithm. The solid and dashed lines represent the average-case and
worst-case regret curves, respectively.

of (log t)4 in the regret bound in Theorem 2 is caused by the minimum sample size. Second, Figure
2 showcases the average estimation errors of the estimates in (12) for five different arm-specific
parameters defined in (6), changing dimensions of observations and contexts. These errors are
normalized by t−0.5 based on Theorem 1. Since the error decreases with a rate t−0.5, the normalized
errors for all the arms are flattened over time. This demonstrates that the square-root accuracy
estimations of {ηi}Ni=1 are available regardless of whether the dimension of observations is greater
or less than that of contexts.

Moving on, Figure 3 provides insights into the average and worst-case regrets of Thompson sam-
pling compared to the Greedy algorithm, with variations in the number of arms (N = 10, 20, 30). It
is worth noting that the Greedy algorithm is considered optimal for the model with a shared param-
eter, but the worst-case regret of it exhibits linear growth in the model with arm-specific parameters.
The worst-case linear regret growth of the greedy algorithm can occur when some arms, which are
totally dominated by other arms, are missing in potential action because of no explicit exploration
scheme. In Figure 3, the plots represent the average and worst-case regrets of the models with arm-
specific parameters, showing that the greedy algorithm has greater worst-case regret for the model
with arm-specific parameters, especially for the case with a large number of arms.

5.2 Real Data Experiments

In this sub-section, we assess the performance of the proposed algorithm using two healthcare
datasets: Eye movement and EGG1. These two datasets are presented in previous studies by [18, 34]
using contextual bandits with arm-specific parameters and shared context. These datasets involve

1The datasets can be found at: https://www.openml.org/

7

https://www.openml.org/


500 1000 1500 2000

0
.3

0
0
.3

5
0
.4

0
0
.4

5
0
.5

0
0
.5

5

A
ve

ra
ge

C
or

re
ct

D
ec

is
io

n
R

at
e

Regression Oracle
Thompson Sampling

time

Eye Movement

500 1000 1500 2000

0
.5

0
0
.5

2
0
.5

4
0
.5

6
0
.5

8

A
ve

ra
ge

C
or

re
ct

D
ec

is
io

n
R

at
e

Regression Oracle
Thompson Sampling

EGG

time

Figure 4: Plots of average correction decision rates of the regression oracle and Thompson sampling
for Eye movement (left) and EGG dataset (right).

classification tasks based on patient information. The Eye movement and EGG data sets are com-
prised of 26 and 14-dimensional contexts with the corresponding patient class categories of 3 and
2, respectively. Each category of patient class is considered an arm in the perspective of the bandit
problem, where a decision-maker gets a reward of 1 for successful classification and 0 otherwise.
We calculate the average correct decision rate of 100 scenarios defined as t−1

∑t
τ=1 I(a(τ) = l(τ)),

where l(t) is the true label of the patient randomly chosen at time t. We compare the suggested
algorithm against the regression oracle with the estimates trained on the entire data in hindsight. We
artificially create observations of the patients’ contexts based on the structure given in (3) with a
sensing matrix A consisting of 0 and 1 only. We reduce the dimension of the patient contexts from
26 to 13 for the Eye movement dataset and from 14 to 10 for the EGG dataset.

Figure 4 displays the average correct decision rates of the regression oracle and Thompson sampling
for the two real datasets. We evaluate the mean correct decision rates over every 100 patients and
then average them across 100 scenarios. Accordingly, each dot represents a sample mean of 10,000
results. For the Eye movement data set, the correct decision rate of Thompson sampling converges
to that of the regression oracle over time. In addition, for the EGG dataset, Thompson sampling
outperforms the regression oracle over time. To the best of our knowledge, this can be caused by
complex reasons with non-linearity in the data and potential arm selection bias incurred by actions
with higher optimal probabilities.

6 Concluding Remarks and Future Work

We studied Thompson sampling for partially observable stochastic contextual bandits under relaxed
assumptions with a particular focus on the arm-specific parameter setup. Indeed, the suggested
model is versatile, encompassing a wide range of possible observation structures and offering es-
timation methods suitable for stochastic contexts. Further, we showed that Thompson sampling
guarantees the square-root consistency of parameter estimation for reward parameters. Finally, we
proved regret bounds for Thompson sampling with a poly-logarithmic rate for the most common
two cases of parameter setups. Our techniques for the analysis hold for other analogous reinforce-
ment learning problems such as a Markov Decision Process thanks to the inclusive assumptions and
comprehensive approaches.

A topic of prospective research involves proposing and examining algorithms designed for partially
observable contextual bandits, where both the sensing matrix and observation covariance matrix are
unknown. Additionally, there is an opportunity to explore the introduction of non-linear structures
into both the observation and reward models. Lastly, investigating this framework in the presence of
an adversary presents a fascinating challenge for future investigations.
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fully observed contextual bandits with a shared parameter in terms of weight matrices. Then, in
Appendix D, we present the theoretical results for the general model, with the comprehensive proofs
found in Appendix F, G, and H. Following this, Appendix E provides insights into the estimation
accuracy and worst-case regret upper bounds for the model with a shared parameter, accompanied
by their proofs detailed in Appendix I and J. Lastly, the complete proofs for Theorem 1 and 2 can
be found in Appendix K and L, respectively.

A Notations

The following notation will be used. We use M⊤ to refer to the transpose of the matrix M ∈ C
p×q ,

and C(M) is employed to denote the column space of M . For a vector v ∈ C
d, we denote the ℓ2

norm by ‖v‖ =
(∑d

i=1 |vi|2
)1/2

, and its unit vector by v̇ = v/‖v‖. Finally, PC(M) is projection on

C(M), and λmin(·) and λmax(·) are the minimum and maximum eigenvalues.

B Technical Assumptions

We describe two assumptions for the theoretical analyses in Section 4. These assumptions, which
are commonly adopted in regret analyses, are presented in the antecedent literature [19, 35, 30, 8].
The first assumption is about the boundedness of the parameter space.

Assumption 1 (Parameter Set). For a parameter and weight matrix Ji, there exists a positive con-
stant cµ such that ‖Jiµ⋆‖ ≤ cµ, for all i = 1, . . . , N .

The next assumption is the margin condition of normalized observations, which is slightly modified
based on Definition 2 and Assumption 2 in the work of [30].

Assumption 2 (Margin Condition). Consider the normalized observation ẏ(t) = y(t)/‖y(t)‖, and
the transformed parameters {ηi}i∈[N ] as defined in (6). Then, given the event {y(t) ∈ A⋆

i }, we

assume that there is C ′ > 0, such that for all u > 0;

∀i 6= j, P
(
0 < ẏ(t)⊤(ηi − ηj) ≤ u

∣∣y(t) ∈ A⋆
i

)
≤ C ′u.

C Weight matrices for the Shared Parameter

We consider the canonical model with a shared parameter and N arm-specific contexts. In this case,
contexts must be arm-specific ones because all arms are indistinct if there is a shared context. To
this end, Ji has the form as follows:

Ji =


0dµ×dµ

· · · 0dµ×dµ
Idµ︸︷︷︸
ith

0dµ×dµ
· · · 0dµ×dµ



⊤

, (18)

which makes the context x(t) vanish except for the ith dµ elements by multiplication. That is, Ji
satisfies the following equations

f(x(t), i) = x(t)⊤Jiµ⋆ = xi(t)
⊤µ⋆.

In the model with a shared parameter described above, a decision maker can learn the parameter,
regardless of a chosen arm. Thus, explicit exploration schemes are not needed for this framework.
For this reason, analyses of this model are easier than those of arm-specific parameters.

D Results for the general model

We show the results for the general model with any cases of weight matrices. Lemma 1 presents that
reward errors given observations have the sub-Gaussian property when observations and rewards
have sub-Gaussian distributions, and thereby, a confidence ellipsoid is constructed for the estimator
in (16). This result came from Theorem 1 of [21] with some modifications.
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Lemma 1. Let wt = ra(t)(t) − x̂(t)⊤Ja(t)µ and Ft−1 = σ{{y(τ)}tτ=1, {a(τ)}tτ=1}. Then, wt is
Ft−1-measurable and conditionally R-sub-Gaussian for some R > 0 such that

E[eνwt |Ft−1] ≤ exp

(
ν2R2

2

)
.

In addition, for any δ > 0, assuming that ‖µ⋆‖ ≤ h and B(1) = λI , λ > 0, with probability at
least 1− δ, we have

‖µ̂(t)− µ⋆‖B(t) =

∥∥∥∥∥

t−1∑

τ=1

J⊤
a(τ)Dy(τ)wτ

∥∥∥∥∥
B(t)

≤ R

√
dµ log

(
1 + L2t/λ

δ

)
+ v−1h,

where L =
√
dyvT (δ), vT (δ) = (2λM log(2dyT/δ))

1/2 and λM = λmax(AΣxA
⊤ +Σy).

The next lemma guarantees the linear growth of eigenvalues of covariance matrices {B+
i (t)}i∈[N ]

defined in (13). This is a cornerstone for the results presented in the remaining part of this section.
Lemma 2. Let ni(t) be the count of ith arm chosen up to the time t. For B+

i (t) in (13), on the event

WT defined in (21), with probability at least 1− δ, if N
(1)
i (δ, T ) ≤ ni(t) ≤ T for given T > 0, we

have

λmax

(
B+

i (t)
)
≤ 2νiM
λmνim+

ni(t)
−1,

where N
(1)
i (δ, T ) = 8dyν

2
iMvT (δ)

4 log(T/δ)/(λ2mν
2
im+); νim+ and νiM be the non-zero minimum

and maximum eigenvalues of J⊤
i DD

⊤Ji, respectively.

The next lemma provides a piece of theoretical evidence that the frequency of the i arm of being
chosen scales linearly with the time horizon when the arm has a positive probability of being the op-
timal arm. As a consequence, the estimation errors of arm-specific transformed parameters decrease
with the rate t−0.5 for all arms with non-zero P(a⋆(t) = i).
Lemma 3. Let the minimum sample size be

N
(2)
i (δ, T, κ) = max

(
N

(1)
i (δ, T ), 16λ−1

m νiMν
−1
im+

(
R
√
dµ log (1 + L2T/δ) + vh

)2

κ−2

)
.

If ni(t) > N
(2)
i (δ, T, κ) and nj(t) > N

(2)
j (δ, T, κ) for j 6= i,

P(a(t) = i|Ft−1)

≥ P(a⋆(t) = i)

2


1−

∑

j 6=i

(
exp

(
−ni(t)λmνim+κ

2

32νiMv2

)
+ exp

(
−nj(t)λmνjm+κ

2

32νjMv2

))
 ,

where κ is the positive constant defined in (17) and Ft−1 is the filtration defined in Lemma 1.

The results above can be applied to all partially observable contextual bandits in any case of weight
matrices.

E Results for the model with a shared parameter

For the model with a shared parameter, the weight matrices {Ji}Ni=1 satisfy the condition introduced
in (18). For the model with a single parameter, ni(t) = t for all i ∈ [N ]. This means that a decision-
maker can learn the shared parameter regardless of the chosen arm. The proof of the following
theorems are in Appendix I and J.
Theorem 3. For partially observable contextual bandits with a shared parameter, let ηi and η̂i(t)
be the transformed true parameter in (6) and the estimate in (12), respectively. Then, given T > 0,

with probability at least 1− δ, for all N
(1)
i (δ, T ) < t ≤ T , Algorithm 1 is guaranteed to have

‖η̂i(t)− ηi‖ ≤ R

√
2νiM

λmνim+

(√
dµ log

(
1 + TL2/λ

δ

)
+ v−1h

)
t−1/2,
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where N
(1)
i (δ, T ) = 32λMd

2
yν

2
iM log2(Tdy/δ) log(T/δ)/(λ

2
mν

2
im+) is the minimum samples for

the ith arm selections; λm = λmin(Σy) and λM = λmax(AΣxA
⊤ + Σy); νim+ and νiM be the

non-zero minimum and maximum eigenvalues of J⊤
i DD

⊤Ji, respectively.

The next theorem provides a high probability regret upper bound of Thompson sampling for partially
observable contextual bandits with a shared parameter.

Theorem 4. Assume that Algorithm 1 is used in partially observable contextual bandits with a
shared parameter. Then, with probability at least 1− δ, Regret(T ) is of the order

Regret(T ) = O
(
Ndµd

3
y log

4

(
TNdy
δ

))
.

The regret bound scales at most log4 T with respect to the time horizon and linearly with N . Simi-
larly to Theorem 2,

√
dy log(TNdy/δ), dµ log(TNdy/δ) and d2y log

2(TNdy/δ) are incurred by the
truncation of observations, estimation error, and the minimum sample size, respectively. Note that a
high probability upper regret bound under the normality assumption has been found for the model
with a shared parameter by [16]. As compared to the setting in the work of [16], the result above is
constructed based on less strict assumptions, in which contexts, observation noise, and reward noise
have sub-Gaussian distributions for observation noise, contexts, and reward noise.

F Proof of Lemma 1

Lemma 1 provides a sub-Gaussian tail property of the reward estimation error wt given µ and shows
a self-normalized bound for vector-valued martingale by using the sub-Gaussian property. The
reward estimation error wt can be decomposed into two parts. The one is the reward error εi(t)
given (1) due to the randomness of rewards. This error is created even if the context x(t) is known.
The other is the context estimation error (x(t)−x̂(t))⊤Jiµ caused by unknown contexts. To show the
sub-Gaussian property of reward estimation error, the next lemma provides a sub-Gaussian property
of context estimation errors.

Lemma 4. The estimate x̂(t)⊤Jiµ⋆ in (4) has the mean x(t)⊤Jiµ⋆ and a sub-Gaussian tail property
such as

E

[
eν(x̂(t)−x(t))⊤Jiµ

∣∣∣ y(t)
]
≤ e

ν2R2
2

2 ,

for any ν > 0 and some R2 > 0.

Proof. Since x̂(t) is the BLUP of x(t), we have E[(x̂(t)− x(t))⊤Jiµ] = 0 and

Var((x̂(t)− x(t))⊤Jiµ|y(t)) = (Jiµ)
⊤(A⊤Σ−1

y A+Σ−1
x )−1Jiµ

based on the results of the work of [33]. Because ‖Jiµ‖ ≤ 1, we can find R2 > 0 such that

(Jiµ)
⊤(A⊤Σ−1

y A+Σ−1
x )−1Jiµ ≤ λmax((A

⊤Σ−1
y A+Σ−1

x )−1) = R2
2, (19)

for any i = 1, . . . , N . Therefore, since ζi(t) has a sub-Gaussian density, we get

E

[
eν(x̂(t)−x(t))⊤Jiµ⋆

∣∣∣ y(t)
]
≤ e

ν2R2
2

2 .

Lemma 5. For any ν > 0, we have

E

[
eν(ri(t)−x̂(t)⊤Jiµ⋆)

∣∣∣ y(t)
]
≤ e

ν2R2

2 .

where R2 = R2
1 +R2

2, for R1 and R2 in (2) and (19), respectively.
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Proof. By (7),

ri(t)− x̂(t)⊤Jiµ⋆ = (x(t)⊤Jiµ⋆ − y(t)⊤ηi) + εi(t),

which implies E[ri(t) − x̂(t)⊤Jiµ⋆|y(t), a(t)] = 0, since y(t)⊤ηi is the BLUP of x(t)⊤Jiµ⋆. Due
to Var(x(t)⊤Jiµ⋆ − y(t)⊤ηi|y(t)) ≤ R2

2 by (19), we can find R > 0 such that

Var(ri(t)− x̂(t)⊤Jiµ⋆|y(t)) = Var(εi(t)) + Var(x(t)⊤Jiµ⋆ − y(t)⊤ηi|y(t)) ≤ R2
1 +R2

2 = R2

Since εi(t) and x(t)⊤Jiµ⋆ − y(t)⊤ηi have a sub-Gaussian distribution, ri(t) − x̂(t)⊤Jiµ has a
sub-Gaussian distribution as well. Thus,

E[eν(ri(t)−x̂(t)⊤Jiµ)|y(t)] = E[eνζi(t)|y(t)] ≤ e
ν2R2

2 .

Lemma 6. For Ji such that E[ri(t)|x(t)] = x(t)⊤Jiµ⋆, let

Dµ
t = exp

(
(ra(t)(t)− x̂(t)⊤Ja(t)µ⋆)x̂(t)

⊤Ja(t)µ⋆

R
− 1

2
(x̂(t)⊤Ja(t)µ⋆)

2

)
,

and Mµ
t =

∏t
τ=1D

µ
τ . Then, E[Mµ

τ ] ≤ 1.

Proof. First, we take the expected value of Dµ
t conditioned on Ft−1 and arranged it as follows:

E[Dµ
t |Ft−1] = E

[
exp

(
(ra(t)(t)− x̂(t)⊤Ja(t)µ⋆)x̂(t)

⊤Ja(t)µ⋆

R
− 1

2
(x̂(t)⊤Ja(t)µ⋆)

2

)∣∣∣∣∣ y(t), a(t)
]

= E

[
exp

(
ζa(t)(t)x̂(t)

⊤Ja(t)µ⋆

R

)∣∣∣∣∣ y(t), a(t)
]
exp

(
−1

2
(x̂(t)⊤Ja(t)µ⋆)

2

)
.

Then, by Lemma 5, we have

E

[
exp

(
ζa(t)(t)x̂(t)

⊤Ja(t)µ⋆

R

)∣∣∣∣∣ y(t), a(t)
]
exp

(
−1

2
(x̂(t)⊤Ja(t)µ⋆)

2

)

≤ exp

(
1

2
(x̂(t)⊤Ja(t)µ⋆)

2

)
exp

(
−1

2
(x̂(t)⊤Ja(t)µ⋆)

2

)
= 1.

Therefore,
E[Mµ

t |Ft−1] = E[Mµ
1 · · ·Dµ

t−1D
µ
t |Ft−1] = Dµ

1 · · ·Dµ
t−1E[D

µ
t |Ft−1] ≤Mµ

t−1.

Now, we continue the proof of Lemma 1. Let φµ be the probability density function of multivariate
Gaussian distribution of µ⋆ with the mean 0dµ

and the positive covariance matrix λ−1I , where
λ = v−2. By Lemma 9 of the work of [21], for Mt = E[Mµ

t |F∞], we have

Pφµ

(
‖St‖2B(t)−1 > 2R2 log

(
det(B(t))1/2

δdet(λI)1/2

))
≤ E[Mt] ≤ δ, (20)

where Pφµ
is the probability measure based on φµ and, St =

∑t
τ=1 J

⊤
a(τ)Dy(τ)wτ . Lemma 5 ,

Lemma 6 and (20) are sufficient conditions for the following inequality

Pφµ

(
‖St‖B(t)−1 > 2R2 log

(
det(B(t))1/2

δdet(λI)1/2

)
, ∀ t > 0

)
≤ δ,

by Theorem 1 of the work of [21]. By Lemma 10 of the work of [21], we have

det(B(t)) ≤ (λ+ tL2/dx)
dx .

Therefore, with probability of at least 1− δ, we have

‖µ̂(t)− µ⋆‖B(t) = ‖St‖B(t)−1 ≤ R

√
dx log

(
1 + L2t/λ

δ

)
+ vh,

which is a similar result to Theorem 2 of the work of [21].
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G Proof of Lemma 2

First, to find the bound for ‖y(t)‖, for δ > 0, we define WT such that

WT =

{
max

{1≤τ≤T}
||y(τ)||∞ ≤ vT (δ)

}
, (21)

where vT (δ) = (2λM log(2dyT/δ))
1/2 and λM = λmax(AΣxA

⊤ +Σy).

Lemma 7. For the event WT defined in (21), we have P(WT ) ≥ 1− δ.

Proof. Note that y(t) has the mean 0dy
and the covariance AΣxA

⊤ + Σy without knowing x(t).
Using the sub-Gaussian tail property, we have

P

(
‖(AΣxA

⊤ +Σy)
−1/2Σ−1/2

y y(t)‖∞ ≥ ε
)
≤ 2dy · e−

ε2

2 .

Accordingly, we have

P

(
‖y(t)‖∞ ≥ λ

1
2

Mε
)
≤ 2dy · e−

ε2

2 .

By taking the union of the events over time, we get

P

(
max
1≤t≤T

‖y(t)‖∞ ≥ λ
1
2

Mε

)
≤ 2Tdy · e−

ε2

2

By plugging (2 log(2dyT/δ))
1/2 in ε, we have

P

(
max
1≤t≤T

‖y(t)‖∞ ≥ (2λM log(2Tdy/δ))
1/2

)
≤ 2Tdy · exp

(
−2 log(2Tdy/δ)

2

)
= δ.

Thus,

P(WT ) ≥ 1− P

(
max
1≤t≤T

‖y(t)‖ ≥ vT (δ)

)
≥ 1− δ.

Then, by Lemma 7, we have

‖y(t)‖ ≤
√
dyvT (δ) := L = O

(√
dy log(Tdy/δ)

)
, (22)

for all 1 ≤ t ≤ T with probability at least 1− δ.

Lemma 8. (Azuma Inequality) Consider the sequence {Xt}1≤t≤T random variables adapted to
some filtration {Gt}1≤t≤T , such that E[Xt|Gt−1] = 0. Assume that there is a deterministic sequence
{ct}1≤t≤T that satisfies X2

t ≤ c2t , almost surely. Let σ2 =
∑

1≤t≤T c
2
t . Then, for all ε ≥ 0, it

holds that

P

(
T∑

t=1

Mt ≥ ε

)
≤ e−ε2/2σ2

.

The proof of Lemma 8 is provided in the work of [36]. Now, we construct a martingale and its
different sequence to find an upper bound of a sum of random variables with Lemma 8. Let the
sigma field generated by the contexts and chosen arms by time t

Gt−1 = σ{x(1), a(1), x(2), a(2), . . . , x(t), a(t)}.
Consider Vt = D⊤Ja(t)y(t)y(t)

⊤J⊤
a(t)D in order to study the behavior of B(t). Note that

14



E[Vt|Gt−1] = J⊤
a(t)DVar(y(t)|Gt−1)D

⊤Ja(t) + J⊤
a(t)DAx(t)x(t)

⊤A⊤D⊤Ja(t)

� λmJ
⊤
a(t)DD

⊤Ja(t), (23)

where λm = λmin(Σy). For all t > 0 and z ∈ C(J⊤
i D) such that ‖z‖ = 1, it holds that

z⊤

(
t−1∑

τ=1

E[Vτ |Gτ−1]

)
z ≥ z⊤




t−1∑

τ=1:a(τ)=i

E[Vτ |Gτ−1]


 z ≥ λmνim+ni(t). (24)

Now, we focus on a high probability lower bound for the smallest eigenvalue of B(t). To proceed,
define the martingale difference Xi

t and martingale Y i
t such that

Xi
t = (Vt − E[Vt|Gτ−1])I(a(τ) = i), (25)

Y i
t =

t∑

τ=1

(Vτ − E[Vτ |Gτ−1]) I(a(τ) = i). (26)

Then, Xi
τ = Y i

τ − Y i
τ−1 and E

[
Xi

τ |Gτ−1

]
= 0. Thus, z⊤Xi

τz is also a martingale difference
sequence. Here, we are interested in the minimum eigenvalue of

∑t−1
τ=1 VτI(a(τ) = i), whose

corresponding eigenvector is not orthogonal to C(J⊤
i D). Because (z⊤Xi

τz)
2 ≤ d2yν

2
iMvT (δ)

4 on

the event WT defined in (21) and thereby
∑t−1

τ=1

(
z⊤Xi

τz
)2 ≤ ni(t)d

2
yν

2
iMvT (δ)

4, using Lemma 8,
we get the following inequality

P

(
z⊤

(
t−1∑

τ=1

Xi
τ

)
z ≤ ε

)
≤ exp

(
− ε2

2ni(t)d2yν
2
iMv

4
T (δ)

)
,

for ε ≤ 0. By plugging ni(t)ε into ε above, we have

P

(
z⊤

(
t−1∑

τ=1

Xi
τ

)
z ≤ ni(t)ε

)
≤ exp

(
− ni(t)ε

2

2d2yν
2
iMv

4
T (δ)

)

for ε ≤ 0. Now, using (23), we have the following inequality

P

(
z⊤

(
t−1∑

τ=1

(V (τ)− E[Vt|Gτ−1]) I(a(τ) = i)

)
z ≤ ni(t)ε

)

≥ P

(
z⊤

(
t−1∑

τ=1

(
V (τ)− λmJ

⊤
a(τ)DD

⊤Ja(τ)

)
I(a(τ) = i)

)
z ≤ ni(t)ε

)
. (27)

Putting together (24), (25), (26) and (27), we obtain

P

(
z⊤

(
t−1∑

τ=1

V (τ)I(a(τ) = i)

)
z ≤ ni(t)(λmνim+ + ε)

)
≤ exp

(
− ni(t)ε

2

2d2yν
2
iMv

4
T (δ)

)
, (28)

where −λmνim+ ≤ ε ≤ 0 is arbitrary. Indeed, using B(t) � ∑t−1
τ=1 V (τ)I(a(τ) = i), for

−λmνim+ ≤ ε ≤ 0, we have

P
(
z⊤B(t)z ≤ ni(t)(λmνim+ + ε)

)
≤ exp

(
− ni(t)ε

2

2d2yν
2
iMv

4
T (δ)

)
. (29)

In other words, by putting exp
(
−ni(t)ε2/(2d2yν2iMvT (δ)4)

)
= δ/T , (29) can be written as

z⊤B(t)z ≥ ni(t)


λmνim+ −

√
2d2yν

2
iMvT (δ)

4

ni(t)
log

T

δ


 ,

for all 1 ≤ t ≤ T with the probability at least 1 − δ. If ni(t) ≥ N
(1)
i (δ, T ) :=

8d2yν
2
iMvT (δ)

4 log(T/δ)/(λ2mν
2
im+) = O(d2y log

3(dyT/δ)), we have

λmax

(
D⊤JiB(t)−1J⊤

i D
)
≤ 2νiM
λmνim+

ni(t)
−1.
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H Proof of Lemma 3

For simplicity, let the event of the ith arm of being optimal at time t Ait = {y(t) ∈ Ai}. Then, we
aim to have a lower bound of the probability P(a(t) = i|Ft−1) to find a lower bound of ni(t) with

P(a(t) = i|Ft−1) ≥ P(a(t) = i|Ait,Ft−1)P(Ait)

≥


1−

∑

j 6=i

P(y(t)⊤η̃i(t) < y(t)⊤η̃j(t)|Ait,Ft−1)


P(Ait).

Using the relationship below,

{y(t)⊤η̃i(t) < y(t)⊤η̃j(t)}

⊂
{
y(t)⊤(η̃j(t)− η̂j(t)) >

1

2
(y(t)⊤(η̂i(t)− ηi − η̂j(t) + ηj) + y(t)⊤(ηi − ηj))

}

⋃{
y(t)⊤(η̃i(t)− η̂i(t)) < −1

2
(y(t)⊤(η̂i(t)− ηi − η̂j(t) + ηj) + y(t)⊤(ηi − ηj))

}
, (30)

we have

P
(
y(t)⊤η̃i(t) < y(t)⊤η̃j(t)|Ait,Ft−1

)

≤ P

(
y(t)⊤(η̃j(t)− η̂j(t) >

1

2
(y(t)⊤(η̂i(t)− ηi − η̂j(t) + ηj) + y(t)⊤(ηi − ηj))

∣∣∣∣Ait,Ft−1

)

+ P

(
y(t)⊤(η̃i(t)− η̂i(t)) >

1

2
(y(t)⊤(η̂i(t)− ηi − η̂j(t) + ηj) + y(t)⊤(ηi − ηj))

∣∣∣∣Ait,Ft−1

)
.

Since y(t)⊤(η̂i(t) − ηi − η̂j(t) + ηj) ≤ ‖y(t)‖
(
λmax(B

+
i (t))1/2 + λmax(B

+
j (t))1/2

)
‖µ̂(t) −

µ⋆‖B(t), by Lemma 1 and 2, if ni(t) ≥ N
(1)
i (δ, T ) and nj(t) ≥ N

(1)
j (δ, T ), we have

|ẏ(t)⊤(η̂i(t)− ηi − η̂j(t) + ηj)|

≤
(
R

√
dµ log

(
1 +

L2T

δ

)
+ v−1h

)(√
2νiM

λmνim+
ni(t)−1 +

√
2νjM

λmνjm+
nj(t)−1

)
.

To lower the value on the RHS of (31) less than κ/2, we need the minimum

samples ni(t) > 16λ−1
m νiMν

−1
im+

(
R
√
dµ log (1 + L2T/δ) + v−1h

)2
κ−2 and nj(t) >

16λ−1
m νjMν

−1
jm+

(
R
√
dµ log (1 + L2T/δ) + v−1h

)2
κ−2, for the arm i and j, respectively. Then,

we have

|ẏ(t)⊤(η̂i(t)− ηi − η̂j(t) + ηj)| ≤
κ

2
,

and thereby

1

2
(ẏ(t)⊤(η̂i(t)− ηi − η̂j(t) + ηj) + y(t)⊤(ηi − ηj)) ≥

κ

4
,

because ẏ(t)⊤(ηi − ηj) ≥ κ given Ait by (17). Accordingly, we have

P(y(t)⊤η̃i(t) < y(t)⊤η̃j(t)|Ait,Ft−1)

≤ P(ẏ(t)⊤(η̃j(t)− η̂j(t)) > κ/4|Ait,Ft−1) + P(ẏ(t)⊤(η̃i(t)− η̂i(t)) > κ/4|Ait,Ft−1).
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Based on (14), by Lemma 2, we have

P(ẏ(t)⊤(η̃i(t)− η̂i(t)) > c|Ait,Ft−1) ≤ E

[
exp

(
− c2

2v2ẏ(t)⊤B+
i (t)ẏ(t)

)]

≤ exp

(
−ni(t)λmνim+c

2

2νiMv2

)

for any c ≥ 0. Thus, if ni(t) > N
(2)
i (δ, T, κ) and nj(t) > N

(2)
j (δ, T, κ) for j 6= i, we have

P(ẏ(t)⊤η̃i(t) < ẏ(t)⊤η̃j(t)|Ait,Ft−1) ≤ exp

(
−ni(t)λmνim+κ

2

32νiMv2

)
+ exp

(
−nj(t)λmνjm+κ

2

32νjMv2

)
,

and thereby

P(a(t) = i|Ait,Ft−1) ≥ 1−
∑

j 6=i

(
exp

(
−ni(t)λmνim+κ

2

32νiMv2

)
+ exp

(
−nj(t)λmνjm+κ

2

32νjMv2

))
.

Therefore, if ni(t) > N
(2)
i (δ, T, κ) and nj(t) > N

(2)
j (δ, T, κ),

P(a(t) = i|Ft−1) ≥ P(a(t) = i|Ait,Ft−1)P(Ait)

≥ P(a⋆(t) = i)

2


1−

∑

j 6=i

(
exp

(
−ni(t)λmνim+κ

2

32νiMv2

)
+ exp

(
−nj(t)λmνjm+κ

2

32νjMv2

))
 .

I Proof of Theorem 3

By Lemma 1, for all 1 ≤ t ≤ T , with probability of at least 1− δ, we have

‖B(t)
1
2 (µ̂(t)− µ⋆)‖ ≤ R

√
dµ log

(
1 + TL2/λ

δ

)
+ v−1h.

Suppose that D⊤Ji has the singular value decomposition UiΣiV
⊤
i . Using (ViΣ

−
i U

⊤
i )D⊤Ji � I ,

where Σ−
i is the pseudo-inverse matrix of Σi, we get

‖B(t)
1
2 (ViΣ

−
i U

⊤
i )D⊤Ji(µ̂(t)− µ⋆)‖ ≤ ‖B(t)

1
2 (µ̂(t)− µ⋆)‖. (31)

Accordingly, we have

γmin((ViΣ
−
i U

⊤
i )⊤B(t)(ViΣ

−
i U

⊤
i ))

1
2 ‖D⊤Ji(µ̂(t)− µ⋆)‖ ≤ ‖B(t)

1
2 (ViΣ

−
i U

⊤
i )D⊤Ji(µ̂(t)− µ⋆)‖,

(32)

where γmin(M) is the smallest non-zero eigenvalue of M for a square matrixM . Finally, by putting
together (31), (32) and Lemma 2, if ni(t) > N

(1)
i (δ, T ), we have

‖η̂i(t)− ηi‖ ≤ λmax(D
⊤JiB(t)−1J⊤

i D)
1
2R

(√
dµ log

(
1 + TL2/λ

δ

)
+ v−1h

)

≤ R

√
2νiM

λmνim+

(√
dµ log

(
1 + TL2/λ

δ

)
+ v−1h

)
ni(t)

− 1
2 . (33)

Because ni(t) = t for all i, for all N (1)
i (δ, T ) < t ≤ T , we have

‖η̂i(t)− ηi‖ ≤ R

√
2νiM

λmνim+

(√
dµ log

(
1 + TL2/λ

δ

)
+ v−1h

)
t−1/2.

Corollary 1. Let η̃i(t) be a sample in (14). Then, if N
(1)
i (δ, T ) < t ≤ T , with probability at least

1− δ, for all i ∈ [N ], we have

‖η̃i(t)− ηi‖ ≤
√

2νiM
λmνim+

(
v

√
2dy log

2TN

δ
+R

(√
dµ log

(
1 + TL2/λ

δ

)
+ v−1h

))
t−1/2.
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Proof. Using P (‖η̃i(t)− η̂i(t)‖ > ǫ) ≤ P
(√

dyZ > ǫ
)
, where Z ∼ N

(
0, v2λmax(B

+
i (t))

)
, we

have

P (‖η̃i(t)− η̂i(t)‖ > ǫ) < 2 · exp
(
− ǫ2

2dyv2λmax(B
+
i (t))

)
.

By putting 2 · exp
(
−ǫ2/(2v2λmax(B

+
i (t)))

)
= δ

TN , we have

‖η̃i(t)− η̂i(t)‖ < v

√
2dyλmax(B

+
i (t)) log

2TN

δ
.

If t > N
(1)
i (δ, T ), by Lemma 2, we have

‖η̃i(t)− η̂i(t)‖ < v

√
2νiM

λmνim+

√
2dy log

2TN

δ
t−1/2.

Therefore, by Theorem 4, for t > N
(1)
i (δ, T ), we have

‖η̃i(t)− ηi‖ ≤
√

2νiM
λmνim+

(
v

√
2dy log

2TN

δ
+R

(√
dµ log

(
1 + TL2/λ

δ

)
+ v−1h

))
t−1/2.

J Proof of Theorem 4

We decompose the regret as follows:

Regret(T ) =

T∑

t=1

y(t)⊤(ηa⋆(t)(t)− ηa(t)(t))

≤
T∑

t=1

y(t)⊤(ηa⋆(t)(t)− η̃a⋆(t)(t) + η̃a(t)(t)− ηa(t)(t))I(a
⋆(t) 6= a(t))

≤
√
dyvT (δ)

T∑

t=1

(‖η̃a⋆(t)(t)− ηa⋆(t)‖+ ‖η̃a(t)(t)− ηa(t)‖)I(a⋆(t) 6= a(t)),

since ‖y(t)‖ ≤
√
dyvT (δ) for all t ∈ [T ] by (22). By Corollary 1, if t > N

(1)
i (δ, T ), with probabil-

ity at least 1− δ, we have

‖η̃a⋆(t)(t)− ηa⋆(t)‖+ ‖η̃a(t)(t)− ηa(t)‖ ≤ g(δ)t−1/2,

where

g(δ) = 2 max
i∈[N ]

(√
2νiM

λmνim+

)(
v

√
2dy log

2TN

δ
+R

√
dµ log

(
1 + TL2/λ

δ

)
+ v−1h

)

= O
(
(d1/2y + d1/2µ )

√
log(TN/δ)

)
.

Now, we construct a martingale sequence with respect to the filtration {Ft−1}Tt=1 defined in Lemma
3. To that end, let G1 = H1 = 0,

Gτ = t−1/2I(a⋆(t) 6= a(t))− t−1/2
P(a⋆(t) 6= a(t)|Ft−1),
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and Ht =
∑t

τ=1Gτ . Since E[Gτ |Fτ−1] = 0, the above sequences {Gτ}τ≥0 and {Hτ}τ≥0 are a
martingale difference sequence and a martingale with respect to the filtration {Fτ}1≤τ≤T , respec-
tively. Let cτ = 2τ−1/2. Since

∑T
τ=1 |Gτ | ≤

∑T
τ=2 c

2
τ ≤ 4 log T , by Lemma 8, we have

P(HT −H1 > ε) ≤ exp

(
− ε2

2
∑T

t=1 c
2
t

)
≤ exp

(
− ε2

8 log T

)
.

Thus, with the probability of at least 1− δ, it holds that

T∑

t=1

1√
t
I(a⋆(t) 6= a(t)) ≤

√
8 log T log δ−1 +

T∑

t=1

1√
t
P(a⋆(τ) 6= a(τ)|Fτ−1). (34)

Now, we proceed to the upper bound of the second term on the right side in (34).

Let A⋆
it = {y(t) ∈ A⋆

i }, where A⋆
i is defined in Definition 1. By applying the same logic in (30),

we get

P(y(t)⊤(η̃j(t)− η̃i(t)) > 0|Ft−1, A
⋆
it)

≤ P(y(t)⊤(η̃j(t)− η̂j(t)) > −y(t)⊤(η̂j(t)− ηj) + 0.5y(t)⊤(ηi − ηj)|Ft−1, A
⋆
it)

+ P(y(t)⊤(η̃j(t)− η̂j(t)) > −y(t)⊤(η̂j(t)− ηj) + 0.5y(t)⊤(ηi − ηj)|Ft−1, A
⋆
it).

By Theorem 3, with probability of at least 1− δ, we have

y(t)⊤(η̂i(t)− ηi) ≤
hi(δ, T )

t1/2
,

for all t ∈ [T ] and i ∈ [N ], where

hi(δ, T ) = R

√
2νiM

λmνim+

(√
dµ log

(
1 + TL2/λ

δ

)
+ v−1h

)
= O

(√
dµ log(T/δ)

)
.

Accordingly, we have

P(ẏ(t)⊤(η̃j(t)− η̃i(t)) > 0|Ft−1, A
⋆
it)

≤ P(ẏ(t)⊤(η̃i(t)− η̂i(t)) > −hi(t)t−1/2 + 0.5ẏ(t)⊤(ηi − ηj)|Ft−1, A
⋆
it)

+ P(ẏ(t)⊤(η̃j(t)− η̂j(t)) > −hj(t)t−1/2 + 0.5ẏ(t)⊤(ηi − ηj)|Ft−1, A
⋆
it). (35)

Let Eij1t = {hi(δ, T )t−1/2 < 0.25ẏ(t)⊤(ηi− ηj)} and Eij2t = {hj(δ, T )t−1/2 < 0.25ẏ(t)⊤(ηi−
ηj)}. Then, we can decompose the first term on the RHS in (35) as follows:

P

(
ẏ(t)⊤(η̃i(t)− η̂i(t)) > −hi(t)

t1/2
+ 0.5ẏ(t)⊤(ηi − ηj)

∣∣∣∣Ft−1, A
⋆
it

)

= P

(
ẏ(t)⊤(η̃i(t)− η̂i(t)) > −hi(t)

t1/2
+ 0.5ẏ(t)⊤(ηi − ηj)

∣∣∣∣Eij1t,Ft−1, A
⋆
it

)
P(Eij1t|Ft−1, A

⋆
it)

+ P

(
ẏ(t)⊤(η̃i(t)− η̂i(t)) > −hi(t)

t1/2
+ 0.5ẏ(t)⊤(ηi − ηj)

∣∣∣∣E
c
ij1t,Ft−1, A

⋆
it

)
P(Ec

ij1t|Ft−1, A
⋆
it).

(36)

By Theorem 3 and Assumption 2, if t > N
(1)
i (δ, T ), we have

P(Ec
ij1t|Ft−1, A

⋆
it) = P

(
4hi(δ, T )t

−1/2 > ẏ(t)⊤(ηi − ηj)
∣∣∣Ft−1, A

⋆
it

)
≤ 4hi(δ, T )C

′

t1/2
.

Thus, the probability in (36) can be written as

P(y(t)⊤(η̃i(t)− η̂i(t)) > −y(t)⊤(η̂i(t)− ηi) + 0.5y(t)⊤(ηi − ηj)|Ft−1, A
⋆
it)

≤ P(y(t)⊤(η̃i(t)− η̂i(t)) > 0.25y(t)⊤(ηi − ηj)|Ft−1, A
⋆
it) +

4hi(δ, T )C
′

t1/2
.
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Using ẏ(t)⊤(η̃i(t)− η̂i(t)) ∼ N (0, v2ẏ(t)⊤B+
i (t)ẏ(t)) given ẏ(t), the first term on the RHS above

can be written as

P(ẏ(t)⊤(η̃i(t)− η̂i(t)) > 0.25ẏ(t)⊤(ηi − ηj)|Ft−1, A
⋆
it) +

4hi(δ, T )C
′

t1/2

≤
∫ ∞

0

P(ẏ(t)⊤(η̃i(t)− η̂i(t)) > 0.25ẏ(t)⊤(ηi − ηj)|ẏ(t),Ft−1, A
⋆
it)P(ẏ(t)

⊤(ηi − ηj) = u)du

+
4hi(δ, T )C

′

t1/2

≤
∫ ∞

0

exp

(
− tλmνim+u

2

32νiMv2

)
P(ẏ(t)⊤(ηi − ηj) = u|A⋆

it)du+
4hi(δ, T )C

′

t1/2
.

Since P(ẏ(t)⊤(ηi − ηj) = u|A⋆
it) < C ′ by Assumption 2, we have

∫ ∞

0

exp

(
− tλmνim+u

2

32νiMv2

)
P(ẏ(t)⊤(ηi − ηj) = u|A⋆

it)du ≤ C ′v

√
32νiM
λmνim+t

.

Thus, we have

P(y(t)⊤(η̃i(t)− η̂i(t)) > −y(t)⊤(η̂i(t)− ηi) + 0.5y(t)⊤(ηi − ηj)|Ft−1, A
⋆
it)

≤ C ′t−1/2

(
v

√
32νiM
λmνim+

+ 4hi(δ, T )

)
. (37)

Similarly,

P(y(t)⊤(η̃j(t)− η̂j(t)) > −y(t)⊤(η̂j(t)− ηj) + 0.5y(t)⊤(ηi − ηj)|Ft−1, A
⋆
it)

≤ C ′t−1/2

(
v

√
32νjM
λmνjm+

+ 4hj(δ, T )

)
. (38)

Using (35), we have

P(y(t)⊤(η̃j(t)− η̃i(t)) > 0|Ft−1, A
⋆
it)

≤ C ′t−1/2

(
v

(√
32νiM
λmνim+

+

√
32νjM
λmνjm+

)
+ 4hi(δ, T ) + 4hj(δ, T )

)
.

By summing the probabilities in (39) over i, j ∈ [N ], we have

N∑

i=1

N∑

j=1

P(y(t)⊤(η̃j(t)− η̃i(t)) > 0|Ft−1, A
⋆
it)P(A

⋆
it)

≤ C ′

√
t

N∑

i=1

N∑

j=1

P(A⋆
it)

(
v

(√
32νiM
λmνim+

+

√
32νjM
λmνjm+

)
+ 4hi(δ, T ) + 4hj(δ, T )

)

≤ 2cMC
′N√
t

, (39)

where cM = maxi∈[N ]

(
v
√

32νiM

λmνim+
+ 4hi(δ, T )

)
= O(

√
dµ log(T/δ)). Note that

P(a⋆(t) 6= a(t)|Ft−1) ≤
N∑

i=1

N∑

j=1

P(y(t)⊤(η̃j(t)− η̃i(t)) > 0|Ft−1, A
⋆
it)P(A

⋆
it), (40)
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by the inclusion-exclusion formula. Putting (39), (40) and the minimal sample size
maxi∈[N ]N

(1)
i (δ, T ) together, we have

T∑

t=1

1√
t
P(a⋆(t) 6= a(t)|Ft−1) ≤ max

i∈[N ]
N

(1)
i (δ, T ) + 2cMC

′N

T∑

t=2

1

t

≤ max
i∈[N ]

N
(1)
i (δ, T ) + 2cMC

′N log T.

By (34), with probability at least 1− δ, we have

T∑

t=1

1√
t
I(a⋆(t) 6= a(t)) ≤ max

i∈[N ]
N

(1)
i (δ, T ) +

√
8 log T log δ−1 + 2cMC

′N log T.

Therefore, since N (1)
i (δ, T ) = O(log3(TNdy/δ)),

Regret(T ) ≤
√
dyvT (δ)g(δ)

(
max
i∈[N ]

N
(1)
i (δ, T ) +

√
8 log T log δ−1 + 2cMC

′N log T

)

= O
(
Ndµd

3
y log

3.5

(
TNdy
δ

))
.

K Proof of Theorem 1

Before starting the proof, we specify the constants described in the statement in Theorem 1. L
is the bound of the ℓ2-norm of observation L =

√
2dyλM log(2dyT/δ) such that ‖y(t)‖ ≤ L.

λm = λmin(Σy) and λM = λmax(AΣxA
⊤ +Σy). pi is the probability of optimality of the ith arm,

as defined in Definition 1. κ is the suboptimality gap defined in (17). Furthermore, νim+ and νiM
be the non-zero minimum and maximum eigenvalues of J⊤

i DD
⊤Ji, respectively.

First, we show that the number of selections of each arm scales linearly with a high probability.

Lemma 9. For partially observable stochastic contextual bandits, with probability at least 1− δ, if

t > s
(3)
i (δ, T, κ), Algorithm 1 guarantees

ni(t) >
pit

4
,

where N
(4)
i (δ, T, κ) := max(2(ai1 + (4/pi)a

2
i2) + 2

√
(ai1 + (4/pi)a2i2)

2 − a2i1, N
(3)
i (δ, T, κ)) =

O(dµd
2
y log

3(TNdy/δ)), ai1 =
∑

j 6=i(s
′′
i (δ) + s′′j (δ)) + 2N/T , ai2 =

√
2 log(2/δ),

N
(3)
i (δ, T, κ) = max(N

(2)
i (δ, T, κ), 64(νiMv

2/(λmνim+κ
2)) log T ) and N

(2)
i (δ, T, κ) is defined

in Theorem 3.

Proof. By Lemma 3, if ni(t) > N
(2)
i (δ, T, κ) and nj(t) > N

(2)
j (δ, T, κ),

P(a(t) = i|Ft−1)

≥ P(a⋆(t) = i)

2


1−

∑

j 6=i

(
exp

(
−ni(t)λmνim+κ

2

32νiMv2

)
+ exp

(
−nj(t)λmνjm+κ

2

32νjMv2

))
 .

If ni(t) ≥ 64(νiMv
2/(λmνim+κ

2)) log T , we have exp
(
−(ni(t)λmνim+κ

2)/(32νiMv
2)
)
≤ T−2.

Now, we assume ni(t) > N
(3)
i (δ, T, κ) = max(N

(2)
i (δ, T, κ), 64(νiMv

2/(λmνim+κ
2)) log T ) for

all i ∈ [N ]. Since I(a(t) = i) − (1/2)P(a⋆(t) = i)
(
1−∑j 6=i P(a(t) = j|Ait,Ft−1)

)
is a
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submartingale difference,
t∑

τ=1

P(a(τ) = i|Fτ−1)

≥ P(a⋆(t) = i)

2


t−

t∑

τ=1

∑

j 6=i

P
(
ẏ(τ)⊤(η̃j(τ)− η̃i(τ)) > κ

∣∣Aiτ ,Fτ−1

)



≥ P(a⋆(t) = i)

2


t−

∑

j 6=i

(N
(3)
i (δ, T, κ) +N

(3)
j (δ, T, κ))− 2N

T


 .

Using Lemma 8, we have

P

(
ni(t)−

t∑

τ=1

P(a(τ) = i|Fτ−1) < −ǫ
)

≤ e−
ǫ2

t ,

for any ǫ > 0. Accordingly, with probability at least 1− δ,

ni(t) >
P(a⋆(t) = i)

2


t−

∑

j 6=i

(N
(3)
i (δ, T, κ) +N

(3)
j (δ, T, κ))− 2N

T


−

√
2t log(2/δ).

The following inequality

pi
2


t−

∑

j 6=i

(N
(3)
i (δ, T, κ) +N

(3)
j (δ, T, κ))− 2N

T


−

√
2t log(2/δ) >

pi
4
t,

is satisfied, if t > 2(ai1 + (4/pi)a
2
i2) + 2

√
(ai1 + (4/pi)a2i2)

2 − a2i1, where ai1 =∑
j 6=i(N

(3)
i (δ, T, κ) + N

(3)
j (δ, T, κ)) + 2N/T and ai2 =

√
2 log(2/δ) based on the quadratic for-

mula. By (41), with probability at least 1− δ, we have

ni(t) >
pit

4
, (41)

if t > N
(4)
i (δ, T, κ) := max(2(ai1 + (4/pi)a

2
i2) + 2

√
(ai1 + (4/pi)a2i2)

2 − a2i1, N
(3)
i (δ, T, κ)) =

O(Ndµd
2
y log

3(TNdy/δ)).

Now, we are ready to prove Theorem 1. From (33), we have

‖η̂i(t)− ηi‖ ≤ R

√
2νiM

λmνim+

(√
dµ log

(
1 + TL2/λ

δ

)
+ v−1h

)
ni(t)

−1/2, (42)

if ni(t) > N
(1)
i (δ, T ). Thus, putting (41) and (42) together, if t > τi(δ, T, κ) :=

max(N
(4)
i (δ, T, κ), 4p−1

i N
(1)
i (δ, T )) = O(p−1

i κ−2Ndµd
2
y log

3(TNdy/δ)), with probability at
least 1− δ, we have the following estimation accuracy

‖η̂i(t)− ηi‖ ≤ R

√
8νiM

λmνim+pi

(√
dµ log

(
1 + TL2/λ

δ

)
+ v−1h

)
t−1/2.

L Proof of Theorem 2

The regret can be written as

Regret(T ) =

T∑

t=1

y(t)⊤(ηa⋆(t)(t)− ηa(t)(t))I(a
⋆(t) 6= a(t))

≤
T∑

t=1

y(t)⊤(ηa⋆(t)(t)− η̃a⋆(t)(t) + η̃a(t)(t)− ηa(t)(t))I(a
⋆(t) 6= a(t)),
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because y(t)⊤(η̃a(t) − η̃a⋆(t)(t)) ≥ 0. Since ‖y(t)‖ ≤
√
dyvT (δ) for all t ∈ [T ], we have

T∑

t=1

y(t)⊤(ηa⋆(t)(t)− η̃a⋆(t)(t) + η̃a(t)(t)− ηa(t)(t))I(a
⋆(t) 6= a(t))

≤
√
dyvT (δ)

T∑

t=1

(‖η̃a⋆(t)(t)− ηa⋆(t)‖+ ‖η̃a(t)(t)− ηa(t)‖)I(a⋆(t) 6= a(t)).

By Theorem 1 and the same logic as the proof of Corollary 1, if t > maxi∈[N ] τi(δ, T, κ), we have

‖η̃a⋆(t)(t)− ηa⋆(t)‖+ ‖η̃a(t)(t)− ηa(t)‖ ≤ Rmax
i∈[N ]

(√
8νiM

λmνim+pi

)
g′(δ)t−1/2,

where

g′(δ) = 2 max
i∈[N ]

(√
8νiM

piλmνim+

)(
v

√
2dy log

2TN

δ
+R

√
dµ log

(
1 + TL2/λ

δ

)
+ v−1h

)

= O
(
(d1/2y + d1/2µ )

√
log(TNdy/δ)

)
.

To proceed, with the probability of at least 1− δ, we utilize the martingale constructed in Theorem
4 with the intermediate result

T∑

t=1

1√
t
I(a⋆(t) 6= a(t)) ≤

√
8 log T log δ−1 +

T∑

t=1

1√
t
P(a⋆(τ) 6= a(τ)|Fτ−1). (43)

To find a bound P(a⋆(τ) 6= a(τ)|Fτ−1), we decompose the following probability using the
inclusion-exclusion formula as follows:

P(y(t)⊤(η̃j(t)− η̃i(t)) > 0|Ft−1, A
⋆
it)

≤ P(y(t)⊤(η̃j(t)− η̂j(t)) > −y(t)⊤(η̂j(t)− ηj) + 0.5y(t)⊤(ηi − ηj)|Ft−1, A
⋆
it)

+ P(y(t)⊤(η̃j(t)− η̂j(t)) > −y(t)⊤(η̂j(t)− ηj) + 0.5y(t)⊤(ηi − ηj)|Ft−1, A
⋆
it). (44)

Similarly to (37) and (38), if t > τi(δ, T, κ) for all i ∈ [N ], we have

P(y(t)⊤(η̃i(t)− η̂i(t)) > −y(t)⊤(η̂i(t)− ηi) + 0.5y(t)⊤(ηi − ηj)|Ft−1, A
⋆
it)

≤ C ′

√
4

pit

(
v

√
32νiM
λmνim+

+ 4hi(δ, T )

)
. (45)

Subsequently, if t > Nj(δ, T, κ), we have

P(y(t)⊤(η̃j(t)− η̂j(t)) > −y(t)⊤(η̂j(t)− ηj) + 0.5y(t)⊤(ηi − ηj)|Ft−1, A
⋆
it)

≤ C ′

√
4

pjt

(
v

√
32νjM
λmνjm+

+ 4hj(δ, T )

)
. (46)

Accordingly, based on (44), (45), and (46), we obtain the following bounds for the probabilities

P(y(t)⊤(η̃j(t)− η̃i(t)) > 0|Ft−1, A
⋆
it)

≤ 2C ′

√
p+min

(
v

(√
32νiM
λmνim+

+

√
32νjM
λmνjm+

)
+ 4hi(δ, T ) + 4hj(δ, T )

)
t−1/2,
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where p+min = mini∈[N ]:pi>0 pi. By summing the probabilities up over i, j ∈ [N ], if t >
τ(δ, T, κ) := maxi∈[N ] τi(δ, T, κ), we have the following upper bound for the probability of choos-
ing a suboptimal arm

P(a⋆(t) 6= a(t)|Ft−1)

≤
N∑

i=1

N∑

j=1

P(y(t)⊤(η̃j(t)− η̃i(t)) > 0|Ft−1, A
⋆
it)P(A

⋆
it)

≤ 2C ′

√
p+mint

N∑

i=1

N∑

j=1

P(A⋆
it)

(
v

(√
32νiM
λmνim+

+

√
32νjM
λmνjm+

)
+ 4hi(δ, T ) + 4hj(δ, T )

)

≤ 4cMC
′N√

p+mint
, (47)

where cM = maxi∈[N ]

(
v
√

32νiM

λmνim+
+ 4hi(δ, T )

)
= O(

√
dµ log(T/δ)). Putting (47) and the

minimum sample size τ(δ, T, κ) together, we have

T∑

t=1

1√
t
P(a⋆(t) 6= a(t)|Ft−1) ≤ τ(δ, T, κ) +

8cMC
′N√

p+min

T∑

t=⌈τ(δ,T,κ)⌉

1

t
≤ τ(δ, T, κ) +

8cMC
′N√

p+min

log T,

where ⌈·⌉ is the ceiling function. By (34), with probability at least 1− δ, we have

T∑

t=1

1√
t
I(a⋆(t) 6= a(t)) ≤ τ(δ, T, κ) +

√
8 log T log δ−1 +

8cMC
′N√

p+min

log T.

Therefore, due to the order of the minimum sample size τ(δ, T, κ) =
O((p+min)

−1κ−2Ndµd
2
y log

3(TNdy/δ)),

Regret(T ) ≤
√
dyvT (δ)g

′(δ)


τ(δ, T, κ) +

√
8 log T log δ−1 +

8cMC
′N√

p+min

log T




= O
(
Ndµd

3
y

p+minκ
2
log4

(
TNdy
δ

))
.
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