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Abstract

Many protein design applications, such as binder or enzyme design, require scaf-1

folding a structural motif with high precision. Generative modelling paradigms2

based on denoising diffusion processes emerged as a leading candidate to address3

this motif scaffolding problem and have shown early experimental success in some4

cases. In the diffusion paradigm, motif scaffolding is treated as a conditional5

generation task, and several conditional generation protocols were proposed or6

imported from the Computer Vision literature. However, most of these protocols7

are motivated heuristically, e.g. via analogies to Langevin dynamics, and lack a8

unifying framework, obscuring connections between the different approaches. In9

this work, we unify conditional training and conditional sampling procedures under10

one common framework based on the mathematically well-understood Doob’s11

h-transform. This new perspective allows us to draw connections between existing12

methods and propose a new conditional training protocol. We illustrate the effec-13

tiveness of this new protocol in both, image outpainting and motif scaffolding and14

find that it outperforms standard methods.15

1 Introduction16

Denoising diffusion models are a powerful class of generative models where noise is gradually17

added to data samples until they converge to pure noise. The time-reversal of this noising process18

then allows to transform noise into samples. This process has been widely successful in generating19

high-quality images [Ho et al., 2020] and has more recently shown promise in designing protein20

backbones that were validated in experimental protein design workflows [Watson et al., 2023].21

Importantly for protein design, diffusion models allow to subject this time-reversed sampling process22

to a target condition. For proteins, a key condition is the inclusion of a structural motif that grants the23

protein a particular function, such as binding to a specific target or forming an enzyme active site.24

However, for these motifs to be foldable and stable, they often need to be integrated into a larger25

protein structure. While there have been notable successes in scaffolding some motifs experimentally,26

many still prove challenging to scaffold [Watson et al., 2023]. This makes the development of27

better conditional generation methods for diffusion models an active area of research, with several28

contributions from the computer vision, molecular and protein design communities in recent times.29

For instance, several methods cast the conditional sampling problem as an inverse (posterior sampling)30

problem and propose adding a guidance term to the time-reversal’s drift (Fig. 1c) [e.g. Ho et al., 2022,31

Chung et al., 2022a]. Another line of work, focusing on ‘inpainting’, suggests replacing the observed32

variable in the diffused state (Fig. 1b) [e.g. Song et al., 2021c, Dutordoir et al., 2023, Mathieu et al.,33

2023]. Yet other work performs heuristic conditional training with the target variables in place34

[Watson et al., 2023, Torge et al., 2023].35
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METHOD STAGE OPERATOR CONSTRAINT FRAMEWORK
Leveraged Soft Hard

Amortised h-transform (ours) Training ✓ ✓ ✓ Amortised trained h
Classifier free [Ho and Salimans, 2022] Training × × ✓ Amortised trained h
Replacement [Song et al., 2021b] Sampling ✓ × ✓ ?

w/ particles: SMCDiff [Trippe et al., 2022] Sampling ✓ ✓ ✓ ?
RFDiffusion [Watson et al., 2023] Training ✓ × ✓ Marginal of h
Classifier guidance [Dhariwal and Nichol, 2021] Finetuning × × ✓ Trained separate p(y|Ht)
Reconstruction guidance [Chung et al., 2022a,b] Sampling ✓ ✓ ✓ Moment matching h

w/ particles: TDS [Wu et al., 2023] Sampling ✓ ✓ ✓ Moment matching h

Table 1: Taxonomy of conditional methods. STAGE indicates when the conditional information is
acquired. OPERATOR indicates whether the measurement operator A is assumed to be known and
thus leveraged by methods. CONSTRAINT classifies the likelihood as either hard or soft, as detailed
in the main text. FRAMEWORK specifies the mechanism by which conditioning is accomplished.
The ‘?’ means that it is unclear how this method fits into the h-transform framework.

(c) Reconstruction Guidance(a) Unconditional Sampling (b) Replacement

xscaffold xscaffold xscaffold

xmotif

xmotif
*

Amortized Training

xscaffold

Figure 1: Schematic illustration of several common approaches to (conditionally) sample from a
diffusion model. The sampling space is partitioned into motif coordinates (vertical) and scaffold
coordinates (horizontal). The target motif is marked as x⋆

motif and regions with plausible scaffolds are
illustrated as blue blobs. A clear definition of each approach as pseudo-algorithm is given in App. B.

In this work, we reinterpret the conditioning problem leveraging Doob’s h-transform. This new36

perspective provides theoretical backing to existing approaches and naturally leads us to propose a37

novel method, which we call amortised training (Fig. 1d, Alg. 5). We highlight the straightforward38

implementation and practical use of our theoretical framework by applying it to problems, first as39

a proof of concept in image generation. We then study the merits and shortcomings of our newly40

proposed amortised training method in more detail for the motif scaffolding problem in protein41

design. We do so by comparing an amortised training implementation of the small-scale diffusion42

model Genie [Lin and AlQuraishi, 2023] on the RFDiffusion benchmark as well as a newly proposed43

benchmark dataset based on the SCOPe classification [Chandonia et al., 2022].44

Our main contributions are as follows: i) We derive a formal framework for conditioning diffusion45

processes using Doob’s h-transform (Sec. 2). ii) We use our framework to create a taxonomy of46

existing methods (Table 1). iii) Our taxonomy elucidated the absence of a specific method within47

the current literature, prompting us to develop and implement this novel approach (Sec. 2.3). iv) We48

empirically assess these different approaches on image generation and protein design (Sec. 3).49

v) Finally, we present plug-and-play algorithms to implement various conditioning schemes (App. B).50

2 Theory: Conditioning diffusions via the h-transform, a new perspective51

We first show how Doob’s h-transform enables diffusion models to satisfy hard equality constraints52

and then generalise this result to handle soft constraints in the context of noisy observations.53

2



2.1 Doob’s h-transform with hard constraint54

Doob’s transform provides a formal mechanism for conditioning a stochastic differential equation55

(SDE) to hit an event at a given time. Formally:56

Proposition 2.1. (Doob’s h-transform Rogers and Williams [2000]) Consider the reverse SDE:

dXt = bt(Xt) dt+ σtdWt, XT ∼ PT , (1)

where time flows backwards and with transition densities pt|s. It then follows that the conditioned
process Xt|X0 ∈ B is a solution of

dHt =
(
bt(Ht)− σ2

t ∇Ht lnP 0|t(X0 ∈ B|Ht)
)
dt+ σtdWt, XT ∼ PT , (2)

such that Law (Hs|Ht) = ps|t,0(hs|ht,x0 ∈ B) and P(H0 ∈ B) = 1.

This says that by conditioning a diffusion process to hit a particular event X0 ∈ B at a boundary57

time (e.g. t = 0), the resulting conditional process is itself an SDE with an additional drift term.58

Furthermore, the resulting SDE will hit the specified event within a finite time T . The function59

h(t,Ht) ≜ P 0|t(X0 ∈ B | Ht) is referred to as the h-transform [Rogers and Williams, 2000,60

De Bortoli et al., 2021a]. The h-transform drift decomposes into two terms via Bayes rule, a61

conditional and a prior score:62

∇Ht
lnP 0|t(X0 ∈ B |Ht) = ∇Ht

lnP t|0(Ht |X0 ∈ B)−∇Ht
lnPt(Ht), (3)

whereby the conditional score ensures that the event is hit at the specified boundary time, while the63

prior score ensures it is time-reversal of the correct forward process [De Bortoli et al., 2021a] (see64

App. A.3).65

Hard constraint We now consider events of the form X0 ∈ B which are described by an equality66

constraint A(X0) = y with A a known measurement (or forward) operator and y an observation.67

We will see concrete examples of A in Sec. 3.68

Corollary 2.2. Consider the reverse SDE (1), then it follows that

dHt = (bt(Ht)− σ2
t∇Ht

lnP 0|t(A(X0) = y |Ht)) dt+ σtdWt, (4)

satisfies Law (Hs|Ht) = Law (Xs|Xt,A(X0) = y) thus Law (H0) = Law (X0|A(X0) = y).

Sampling (4) directly provides samples x ∼ pdata which also satisfy A(x) = y. Crucially, this SDE69

is guaranteed to hit the conditioning in finite time, unlike prior equilibrium-motivated approaches70

[Chung et al., 2022a, Meng and Kabashima, 2022, Finzi et al., 2023, Song et al., 2022, Han et al.,71

2022, Dutordoir et al., 2023].72

Reconstruction guidance To get better insight into the challenge of sampling from Doob’s h-73

transform (4) let us re-express the h-transform as74

P 0|t(A(X0) = y |Ht) =

∫
1A(x0)=y(x0)p0|t(x0|Ht)dx0 (5)

where in the case of denoising diffusion models p0|t(x0|·) is the transition density of the reverse SDE75

(1). In practice, one does not have access to this transition density – i.e. we can sample from this76

distribution, but we cannot easily get its value at a certain point. This makes it difficult to approximate77

the integral. To alleviate this, a strand of recent works [Finzi et al., 2023, Song et al., 2022, Rozet78

and Louppe, 2023] have proposed Gaussian approximation of p0|t(x0|·) ≈ N (x0 | E[X0|Xt =79

·],Γt) leveraging Tweedie’s formula and the already trained score network. This line of work is80

referred as reconstruction guidance. We note that whilst proposing to approximate the quantity81

P 0|t(A(X0) = y|·), they do not make the connection to Doob’s transform and thus are unable to82

provide guarantees on the conditional sampling that Cor. 2.2 provides. Overall, the Gaussian-based83

approximations of Doob’s h-transform lead to reconstruction guidance-based approaches [Finzi84

et al., 2023, Rozet and Louppe, 2023, Chung et al., 2022a, Han et al., 2022, Song et al., 2022]85

dHt =
(
bt(Ht) + σ2

t∇Ht
||y −AE[X0|Xt = Ht]||2Γt

)
dt + σtdWt, XT ∼ PT , where Γt acts86

as a guidance scale [Simon V et al., 2023, Rozet and Louppe, 2023], and A is a matrix if A is linear87

otherwise A = dA(E[X0|Xt = Ht]).88
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2.2 Generalised h-transform for soft constraints89

In the previous Sec. 2.1, we showed how the h-transform allows for conditioning on hard constraints,90

correcting the reverse process to satisfy some observation P (y|x0) ∝ 1A(X0)=y(x0). Yet, many sce-91

narios deal with soft constraints, modelling noisy observation y = A(x) + η with a density p(y|x0),92

typically with the goal of sampling from the posterior p(x0|Y = y) = p(y|x0)pdata(x0)/p(y) as93

in noisy inverse problems [Song et al., 2021a, Chung et al., 2022a,b]. In this section, we present a94

generalisation of the h-transform applicable to denoising diffusion models that build on results in95

[Vargas et al., 2023]:96

Proposition 2.3. (Noisy conditioning) Given the following forward SDE:

dXt = ft(Xt) dt+ σt Wt, X0 ∼ Pdata (6)

it follows that the following reverse SDE with marginals pt

HT ∼ Law (XT |X0)

dHt =
(
ft(Ht) + σ2

t (∇Ht ln pt(Ht) +∇Ht ln py|t(Y = y|Ht))
)
dt+ σt dWt, (7)

satisfies Law (H0) = p(x0|Y = y) where py|t(Y = y|·) =
∫
p(Y = y|x0)p0|t(x0|·)dx0.

In short, the above results give a variant of the h-transform that allows to sample from noisy posteriors.97

This provides theoretical backing to methodologies such as DPS [Chung et al., 2022a], in which the98

SDE (8) is used to solve noisy inverse problems.99

Corollary 2.4. Furthermore, for an Ornstein-Uhlenbeck (OU) forward process, i.e. with drift
ft(x) = −βtx and diffusion σt =

√
2βt, we have that

dHt=−βt

(
Ht+2∇Ht ln pt(Ht)+2∇Ht ln py|t(Y =y|Ht)

)
dt+
√

2βt dWt, HT ∼N (0, I)
(8)

satisfies Law (H0) ≈ p(x0|Y = y). As such, HT inherits the rapid convergence guarantees of the
OU process [De Bortoli, 2022, De Bortoli et al., 2021b], in particular ||Law (HT )−N (0, I)||TV ≤
O
(
e−T/β̄

)
for some β̄ > 0.

2.3 Amortised training of h-transform100

In this section, we propose an objective for learning Doob’s h-transform at training time in an101

amortised fashion. Note that since P 0|t(A(X0) = y|Xt = h) = P t|0(h|A(X0) = y)p0(A(X0) =102

y)/pt(Xt = h) we can re-express the Doob’s transformed SDE of a reversed OU process as:103

dHt = −βt

(
Ht + 2∇Ht lnP t|0(Ht|A(X0) = y)

)
dt+

√
2βt dWt, HT ∼ Law (XT ) .

104

Proposition 2.5. The minimiser of

f∗=argmin
f

EY ∼p|A,X0
,A∼p,X0∼pdata

[∫ T

0

||f(t,Xt,Y ,A)−∇Xt ln pt|0(Xt|X0)||2dt

]
(9)

is given by the conditional score f∗
t (h,y,A) = ∇h ln pt|0(h|Y = y).

This is referred as amortised learning for conditional sampling, since practically the neural network105

approximating the (conditional) score is amortised over A and y, instead of learning a separate106

network for each condition. This approach is reminiscent of ‘classifier free guidance’ [Ho and107

Salimans, 2022] where the score network is amortised over some auxiliary variable (e.g. as in text-to-108

image models [Ramesh et al., 2021]), or of RFDiffusion [Watson et al., 2023] where proteins are109

designed given a specific subset motif. Our framework is different to ‘classifier free guidance’ as A110

is assumed to be known (e.g. an inpainting mask), and to RFDiffusion since the conditioning variable111

Y being a subset of X , is also being noised during training and denoised when sampling (see Alg. 5),112

also note due to its formulation classifier guidance would be unable to noise a subset of X (the motif)113

as we do.114
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2.4 Conceptual comparison with RFDiffusion115

As highlighted in Alg. 4 and in contrast to our approach, RFDiffusion [Watson et al., 2023] does not116

noise the motif coordinates X [M ]
0 with the forward OU-Process, instead it directly aims to sample117

from p(X
[\M ]
t |X [M ]

0 ) and estimate this score while keeping the motif fixed.118

We can relate this approach to our amortised learning of Doob’s h-transform, by noting that RF119

diffusion can be understood as learning the marginal conditional score:120

p(X
[\M ]
t |X [M ]

0 ) =

∫ ∝h(t,Xt)pt(Xt)︷ ︸︸ ︷
p(Xt|X [M ]

0 ) dX
[M ]
t . (10)

This can be viewed as RFDiffusion estimating a marginal counterpart of our amortised h-transform121

approach. See Algs. 4 and 5 for more details on how these approaches differ in a pseudo-code122

implementation.123

3 Experimental results124

To compare the various conditional generation methods, we first highlight our results from initial tests125

in the image setting and then discuss the motif scaffolding problem in protein design in more detail.126

3.1 Conditional image generation.127

The task of ‘image outpainting’ mimics the motif scaffolding problem in protein design and amounts128

to conditioning the diffusion model on a central patch of an image. The measurement model129

A ∈ {0, 1}n×d will select n central pixels out of an image in Rd. We consider noise-free conditions130

(i.e. hard constraints). We focus on the CELEBA [Liu et al., 2015] and FLOWERS [Nilsback and131

Zisserman, 2008] image datasets. We empirically evaluate the AMORTISED approach where the mask132

is provided at training time as an extra channel, along with RECONSTRUCTION GUIDANCE (Alg. 8)133

and REPLACEMENT (Alg. 9) methods for which the score network is trained without access to the134

mask, and are then queried at sampling time. The quality of conditional samples is measured by the135

mean squared error (MSE) and LPIPS perceptual metric [Zhang et al., 2018]. See App. D for further136

details. We empirically observe from Table 3 that the AMORTISED approach slightly outperforms137

sampling-based methods, which are on par with each other.138

Condition Amortised R. Guidance Replacement

Figure 2: Some conditional samples.

METRIC AMORTISED R. GUIDANCE REPLACEMENT

FLOWERS
MSE (↓) 0.34±0.01 0.27±0.01 0.28±0.01

LPIPS (↓) 0.25±0.00 0.29±0.01 0.33±0.01

CELEBA
MSE (↓) 0.26±0.01 0.30±0.01 0.34±0.00

LPIPS (↓) 0.14±0.00 0.15±0.01 0.17±0.00

Table 2: Quantitative assessment of condi-
tional samples w.r.t to ground-truth.

3.2 Conditional protein design: motif scaffolding139

The task of motif scaffolding in our protein setting amounts to sampling protein C alpha atom140

coordinates x ∈ Rd such that it contains a given subset of C alpha coordinates y ∈ Rn, i.e.141

y = A(x) = Ax, where A ∈ {0, 1}n×d is a masking matrix which selects n observed C alpha142

coordinates. We perform two sets of motif scaffolding experiments. We firstly compare our proposed143

AMORTISED approach to REPLACEMENT and RECONSTRUCTION GUIDANCE as we did in the image144

case. Upon observing that AMORTISED performs significantly better, we then dive into a more145

detailed analysis of this method on the RFDiffusion benchmark, as well as a new SCOPe based146

benchmark that is created from a hierarchical structure and sequence-based split described below.147
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Amortised R. Guidance Replacement

Figure 3: Conditional protein designs in
yellow with target motif 3IXT in blue.

METRIC AMORTISED R. GUIDANCE REPLACEMENT

% Success (↑) 20.0 1.5 0.5
% scRMSD < 2 Å(↑) 35.1 45.1 0.6
% mRMSD < 1 Å(↑) 50.0 4.2 24.3

Table 3: RFDIFF benchmark metrics.
Success: pAE < 5, scRMSD < 2Å,
motifRMSD < 1Å, pLDDT > 70, scTM > 0.5.
Details in Sec. 3.2.

Data We evaluate on the RFDiffusion motif benchmark [Watson et al., 2023] and on a self-curated148

SCOPe benchmark based on a hierarchical structure-based split, jointly with a sequence-similarity149

based split. For the RFDiffusion benchmark, we tested all sequence-contiguous motifs, resulting in150

11 different motif design tasks. Our method readily extends to the non-contiguous motif setting and151

future work will address this in more detail. The performance on each of these targets is depicted152

in Fig. 4. For the SCOPe dataset, we leverage the hierarchical structure classification scheme of the153

SCOPe database [Chandonia et al., 2022] to create train-test splits that allow us to investigate how154

well the model can scaffold motifs from unseen folds, families and superfamilies and how difficult155

these tasks are with respect to each other. In particular, for training, we hold out four clusters of156

protein structures at the fold level, four at the family level and four at the superfamily level (Fig. 5a)157

and evaluate the motif-scaffolding performance of the model on this structure-based hold-out set158

(Fig. 5b-d).159

Diffusion process We use a discrete-time DDPM [Ho et al., 2020] formulation for the diffusion160

model with N = 1000 steps and cosine β-schedule [Dhariwal and Nichol, 2021].161

Noise model The denoising model εθ is adapted from the Genie diffusion model [Lin and162

AlQuraishi, 2023]. In Genie, the denoiser architecture consists of an SE(3)-invariant encoder163

and an SE(3)-equivariant decoder. While the network uses Frenet-Serret frames as intermediate164

representations, the diffusion process itself is defined in Euclidean space over the C alpha coordinates.165

Similar to AlphaFold2, the denoiser network consists of a single representation track that is initialised166

via a single feature network and a pair representation track that is initialised via a pair feature network.167

These two representations are further transformed via a pair transform network and are used in the168

decoder for noise prediction via IPA Jumper et al. [2021].169

To evaluate unconditional sampling-based methods, we retrained the Genie denoising network for170

4000 epochs on 4 A100 GPUs (∼300 A100 hours in total). We stopped training at this point, as we171

observed an almost comparable performance to the publicly available model weights (which were172

obtained after training for 50’000 epochs).173

To evaluate the AMORTISED approach (Alg. 5), we perform a minor modification to the unconditional174

Genie model by adding an additional conditional pair feature network that takes the motif frames as175

input with the ground truth coordinates for the motif and 0 as values for all other coordinates that176

are not part of the motif. The output of this motif-conditional pair feature network is concatenated177

with the output of the unconditional pair feature network to form an intermediate dimension of178

twice the channel size compared to the unconditional model, before being linearly projected down179

to the channel size of the unconditional model. From then onward the output is processed by the180

remaining Genie components as in the unconditional model. The implementation is therefore similar181

to the image case, where the motif features are presented as additional input and the model learns182

to use these for reconstructing the motif. This minor alteration of the Genie architecture means our183

amortised network has 4.162M parameters while the unconditional Genie networks have 4.087M184

parameters (∼ 1.8% fewer).185

Methods In the amortised setting we follow the pseudo-code definition given in Alg. 5. In 80%186

of the training steps, we pass a condition to the network. The other 20% contains an empty mask187

consisting of only 0’s. For the reconstruction guidance method (Alg. 8), we use a time-dependent188

guidance term of γt = αt(1− αt).189

Metrics We measure the performance of the methods across two axes: designability and success190

rate.191
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Figure 4: Comparison of our method to RFDiffusion for motif scaffolding for 12 continuous targets.
Note that we trained our 4.1M parameter model for only 4000 epochs (∼300 A100 hours in total),
which is significantly less both in compute and parameter size than RFDiffusion (∼26’000+ A100
hours, 59.8M parameters). For the motifs marked with *, we had to shorten the sampled scaffold
ranges on both sides of the motif from 0-65 (0-63 for TMRX80) to 0-50 since we trained our version
of Genie only on protein generation up to a length of 128 residues. Performance numbers from
RFDiffusion are taken from the original publication Watson et al. [2023] and our designs were created
with the same design specifications as described there. We note that our folding step uses ESMFold
instead of AlphaFold2, but we have future plans to use AlphaFold2 for a more direct comparison.

To assess whether a particular protein scaffold is designable, we run the same pipeline as Lin and192

AlQuraishi [2023], consisting of an inverse folding generated Cα backbones with ProteinMPNN and193

then re-folding the designed sequences via ESMFold. The considered metrics and their corresponding194

thresholds are the following:195

• scTM > 0.5: This refers to the TM-score between the structure that’s been designed and196

the predicted structure based on self-consistency as previously described. The scTM-score197

ranges from 0 to 1. Higher scores indicate a higher likelihood that the input structure can be198

designed.199

• scRMSD < 2 Å : The scRMSD metric is akin to the scTM metric. However, it uses the200

RMSD (Root Mean Square Deviation) to measure the difference between the designed and201

predicted structures, instead of the TM-score. This metric is more stringent than scTM as202

RMSD, being a local metric, is more sensitive to minor structural variances.203

• pLDDT > 70 and pAE < 5: Both scTM and scRMSD metrics depend on a structure prediction204

method like AlphaFold2 or ESMFold to be reliable. Hence, additional confidence metrics205

such as pLDDT and pAE are employed to ascertain the reliability of the self-consistency206

metrics.207

In addition, we want to judge whether the motif scaffolding was successful or not. Therefore, similar208

to previous work by Watson et al. [2023], we calculate the motifRMSD between the predicted design209

structure and the original input motif and judge samples with < 1 Å motifRMSD as a successful motif210

scaffold.211

Results We evaluate all three approaches on the continuous motifs from the RFDIFFusion motif212

benchmark [Watson et al., 2023]. For the AMORTISED approach we retrain the Genie model [Lin and213

AlQuraishi, 2023] in an amortised fashion (Alg. 5), while for the R. GUIDANCE and REPLACEMENT214

7



Figure 5: Data ablation study on a newly curated SCOPe benchmark dataset with our amortised
training model. (a) We utilise the hierarchical structural clustering of SCOPe to create hold-out sets
at three different levels of structural hierarchy: the fold, the family and the superfamily level. (b)
We test the motif scaffolding performance on these splits and see decreasing scaffolding success
for structurally dissimilar samples. (c) The same metrics as in (b), but only for samples that fulfill
the definition of in silico success. (d) Scaffolding success by SCOPe class. Alpha helices can be
scaffolded successfully, whereas other classes are more challenging.

methods we used the publicly available unconditional model. We observe that amortised training215

outperforms the other approaches, especially replacement sampling (Fig. 3.2).216

To better understand how well the AMORTISED conditioning approach works, we break down our217

model performance on the different targets and compare it to the performance of RFDiffusion (Fig. 4).218

Despite having trained a smaller model with fewer computing resources, we obtained competitive219

performance on several targets.220

We also ablate our model performance w.r.t. structural dissimilarity of the motif compared to221

the training set via our previously described SCOPe benchmark. Testing the motif-scaffolding222

performance of the amortised model on this data, we see that the scaffolding success decreases223

from fold-over family to superfamily, indicating that scaffolding a motif from a protein that is224

more different to the training set is harder (Fig. 5b-c). We also quantitatively observe an anecdotal225

phenomenon in protein design: while alpha helices are relatively easy to scaffold, domains from other226

classes have significantly lower success rates (Fig. 5d). We hope that this benchmark set will help to227

address these issues in future modelling efforts.228

4 Conclusion229

We presented a unified framework, based on Doob’s h-transform, to better understand and clas-230

sify different conditional diffusion methods. Based on the gained insights, we developed a novel231

AMORTISED conditional sampling scheme (Alg. 5) which differs from existing approaches in that it232

takes into account the measurement operator. For the motif scaffolding task this means we denoise233

both the scaffold and the motif. We evaluated the AMORTISED approach on image outpainting234

and motif scaffolding in protein design and outperform standard methods. We further investigated235

the performance of the AMORTISED approach by comparing to RFDiffusion on contiguous motifs.236

Surprisingly, our AMORTISED implementation of Genie [Lin and AlQuraishi, 2023] achieves notable237

in-silico success rates of between 3 – 50% (as per the RFDiffusion definition) across the targets.238

Though it lags behind RFDiffusion in 9/12 targets, it achieves this without low-temperature sampling,239

a mere 10% of RFDiffusion’s parameter count, and after being trained for just 1.2% of the time. This240

positions the AMORTISED approach as a promising candidate for further improving motif scaffolding,241

potentially opening up new applications in protein engineering for drug discovery and enzyme design.242
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A Background on diffusion formulations332

A.1 Continuous and discrete diffusion formulations333

The discretised DDPM versions with various discrete time schedules amount to the time-dependent334

OU process335

dXt = −
β(t)

2
xtdt+

√
β(t) dWt (11)

where choosing different time schedules amounts to choosing different functions β(t). This process336

gives rise to the Green’s function for transition probabilities337

p(x, t|x0, 0) = pt|0(x|x0) (12)

= N

(
x0e

−
∫ T
0

β(s)
2 ds,

∫ T

0

β(t)e−
∫ T−t
0

β(s)dsdt

)
(13)

= N
(
x0e

−
∫ T
0

β(s)
2 ds,

(
1− e−

∫ T
0

β(s)ds
))

. (14)

With ᾱ(t) = e−
∫ T
0

β(s)ds, this is the familiar form (Ho et al. [2020]):338

p(x, t|x0, 0) = pt|0(x|x0) = N
(
x0

√
ᾱ(t), (1− ᾱ(t))

)
, (15)

with ᾱ(t) time-dependent and we can therefore choose different functional forms for the noise339

schedule by either choosing the transition parameters β(t) or the cumulative parameters α(t).340

If we define the noise schedule in terms of β(t), the time-dependent OU process is immediately341

apparent (see (11)).342

If we define the noise schedule in terms of ᾱ(t), the mean and variance of the corresponding OU343

process can simply be obtained from344

β(t) = − d

dt
[ln ᾱ(t)] . (16)

A.2 Score, noise and mean diffusion formulations345

The score-based model used for generation at inference time can be parametrised to model different346

quantities. The three most common one are the score, the noise and the mean.347

When starting from the DDPM formulation of describing the diffusion process as a Gaussian linear348

Markov chain, it is natural to let the network predict the mean of this Gaussian, with the covariance349

being a fixed parameter:350

µθ(xt, t) =
1
√
αt

(xt −
1− αt√
1− ᾱ(t)

εt) (17)

However, we have access to the input xt at training time and can therefore reparameterize the351

Gaussian in order to make our network predict the noise εtinstead of the mean µt:352

xt−1 = N (xt−1;
1
√
αt

(xt −
1− αt√
1− ᾱ(t)

εθ(xt, t)) (18)

When starting from the score-based SDE formulation, one can instead let the network predict the353

score term in order to minimise the following score matching loss:354

L = Et,x0,xt
||sθ(xt, t)−∇xt

ln pt|0(xt|x0)||2/σ2
t (19)
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A.3 Doob’s h-transform intuition355

As mentioned before Doob’s h-transform adds a new drift to the SDE which amounts to two terms356

(via Bayes Theorem), a conditional and an unconditional score:357

∇ lnP 0|t(X0 ∈ B|·) = ∇ lnP t|0(·|X0 ∈ B)−∇ lnPt(·) (20)

Interestingly, these two terms provide for a unique intuition: the Doob’s transform SDE is the time358

reversal of the forward SDE corresponding to (1), that is the time reversal of the forward SDE359

dXt = bt(Xt) dt+ σtdWt, X0 ∼ P 0(·|X0 ∈ B), (21)

coincides with the Doob transformed SDE (2) [De Bortoli et al., 2021a].360

Thus we can view Doob’s transform as the following series of steps:361

1. Time reverse the SDE we want to condition ((2) to (21)).362

2. Impose the condition via ancestral sampling from the conditioned distribution/posterior.363

3. Time reverse once more to be in the same time direction as we started.364

A.4 Examples365

Truncated normal Here for illustrative purposes we frame the problem of sampling from a366

truncated normal distribution as simulating an SDE that is given by Doob’s h-transform.367

Let’s remind that a 1d truncated normal distribution had a density p(x|a, b) ∝ 1x∈(a,b)(x)N (x|µ, σ2).368

Now, let’s assume a data distribution p0(x) = N(µ, σ2) which is noised with an OU process (11).369

Thus we have that p(x0|xt) = N(x0|µ̂0|t(xt), σ̂0|t(xt)
2) is Gaussian, and so is p(xt) = N(xt|µ̂t, σ̂

2
t ).370

Let’s add the constraint that the process hit at time t = 0 the event X0 ∈ (a, b).371

dHt = β(t)

(
Ht

2
+∇Ht

lnP t(Ht)−∇Ht
lnP 0|t(X0 ∈ (a, b) |Ht)

)
dt+

√
β(t) dWt,

(22)

We have that the h-transform is given by372

h(t,Ht) = P 0|t(X0 ∈ (a, b)|Ht) =

∫
1x∈(a,b)(x0)p0|t(x0|Ht)dx0

=

∫
1x∈(a,b)(x0)N (x|µ̂0|t(Ht), σ̂0|t(Ht)

2)dx0

=
1

σ̂0|t(Ht)

ϕ
(

Ht−µ̂0|t(Ht)

σ̂0|t(Ht)

)
Φ
(

b−µ̂0|t(Ht)

σ̂0|t(Ht)

)
− Φ

(
a−µ̂0|t(Ht)

σ̂0|t(Ht)

) (23)

where ϕ(ξ) = 1√
2π

exp
(
− 1

2ξ
2
)

is the pdf of a standard normal distribution, Φ(ξ) =373

1
2

(
1 + erf(ξ/

√
2)
)

its cumulative function. The corrective drift term due to the h-transform can then374

be computed via autograd. The unconditional score term can be computed in closed form.375

B Algorithms376

In this section, we reformulate multiple algorithms from the literature under our common framework377

as a reference for practitioners. In these algorithms, we use the following conventions: our dataset378

is drawn from the law Pdata, but we can only sample from the simpler law Psampling at inference379

time, which is often chosen as multivariate standard normal Psampling = N (0, I). Therefore, we380

construct a forward noising process Pdata → Psampling that is parametrised via the noise schedule381

βt = β(t), ᾱt = ᾱ(t) and try to learn the reverse denoising process Psampling → Pdata. Due to this382

notion of "forward", and to keep consistency with the literature on denoising diffusion models, we383

explicate the nomenclature Pdata = P0 and Psampling = PT .384
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There is an additional law Pnoise that is sometimes confused with Psampling since in practice both are385

often chosen as N (0, I), but they are two distinct laws that could in principle be different. Pnoise is386

the law from which the noise added during the forward noising process as well as the during the387

reverse diffusion process is drawn from.388

For reference, we first reiterate the unconditional DDPM training and sampling algorithms, followed389

by the various conditional methods. For each method, we highlight the differences to standard DDPM390

sampling or training in gray boxes for clarity.391

B.1 Unconditional algorithms392

Algorithm 1 | Unconditional training of denoising diffusion models [Ho et al., 2020]

Require: Dataset drawn from law Pdata = P0 ▷ Dataset law Pdata
Require: Noise schedule βt = β(t), ᾱt = ᾱ(t), parametrising process Pdata → Psampling
Require: Untrained noise predictor function fθ(x, t) with parameters θ

1: repeat
2: x0 ∼ P0 = Pdata
3: t ∼ Uniform({1, ..., T})

4: ▷ Forward noise sample, xt ∼ pt|0(x0) ◁
5: εt ∼ Pnoise ▷ Often Brownian motion, Pnoise = N (0, I)
6: xt ←

√
ᾱtx0 +

√
1− ᾱtεt

7: ▷ Estimate noise of noised sample ◁
8: ε̂θ ← fθ(xt, t)

9: Take gradient descent step on
∇θL(εt, ε̂θ) ▷ Typically, loss L(xtrue, xpred) = ||xtrue − xpred||2

10: until converged or max epoch reached

Algorithm 2 | Unconditional sampling with denoising diffusion models [Ho et al., 2020]

Require: Unconditionally trained noise predictor fθ(xt, t)
Require: Noise schedule βt = β(t), ᾱt = ᾱ(t), parametrising process Pdata → Psampling

1: ▷ Sample a starting point xT ◁
2: xT ∼ PT = Psampling ▷ Often PT = N (0, I)

3: ▷ Iteratively denoise for T steps ◁
4: for t in (T, T − 1, . . . , 1) do
5: ▷ Predict noise with learned network ◁
6: ε̂θ = fθ(xt, t)

7: ▷ Denoise sample with learned reverse process xt−1 ∼ pt−1|t(xt) ◁
8: ▷ Perform reverse drift ◁

9: xt−1 ←
1√

1− βt

(
xt −

βt√
1− ᾱt

ε̂θ

)

10: ▷ Perform reverse diffusion, which is often Brownian motion in Rn, i.e. Pnoise = N (0, I) ◁
11: εt ∼ Pnoise if t > 1 else εt ← 0
12: xt−1 ← xt−1 + σtεt ▷ A common choice is σt = β(t)
13: return x0
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B.2 Conditional training393

Algorithm 3 | Classifier-free conditional training [Ho and Salimans, 2022]

Require: Dataset drawn from Pdata ▷ Dataset law Pdata over data and auxiliary variable
Require: Noise schedule βt = β(t), ᾱt = ᾱ(t), parametrising process Pdata → Psampling
Require: Untrained noise predictor function fθ(x, t) with parameters θ

1: repeat
2: x0,y ∼ P0 = Pdata
3: εt ∼ Pnoise ▷ Often Brownian motion, Pnoise = N (0, I)
4: t ∼ Uniform({1, ..., T})
5: xt =

√
ᾱtx0 +

√
1− ᾱtεt

6: ε̂θ = fθ(xt, t,y)
7: Take gradient descent step on

∇θL(εt, ε̂θ) ▷ Typically, L(xtrue, xpred) = ||xtrue − xpred||2
8: until converged or max epoch reached

Algorithm 4 | RFDiffusion conditional training [Watson et al., 2023]

Require: Dataset drawn from Pdata ▷ Dataset law Pdata
Require: Noise schedule βt = β(t), ᾱt = ᾱ(t), parametrising process Pdata → Psampling
Require: Untrained noise predictor function fθ(x, t,M) with parameters θ

1: repeat
2: x0 ∼ P0 = Pdata
3: t ∼ Uniform({1, ..., T})
4: x

[M ]
0 ∪ x

[\M ]
0 ← x0 ▷ Randomly partition data point into motif and rest

5: ▷ Forward noise the non-motif rest via sampling from p0|t(x0) ◁
6: εt ∼ Pnoise

7: x
[\M ]
t ←

√
ᾱtx

[\M ]
0 +

√
1− ᾱtε

[\M ]
t

8: ▷ Combine unnoised motif with noised rest and set timestep of motif part to 0 ◁

9: xt ← x
[M ]
0 ∪ x

[\M ]
t

10: t[M ] ← 0
11: ε̂θ ← fθ(xt, t,M) ▷ Estimate noise of sample with noised rest
12: Take gradient descent step on

∇θL(ε, ε̂θ) ▷ Typically, L(xtrue, xpred) = ||xtrue − xpred||2
13: until converged or max epoch reached

Algorithm 5 | Amortised training – i.e. Doob’s h-transform conditional training (new)

Require: Dataset drawn from Pdata ▷ Dataset law Pdata
Require: Noise schedule βt = β(t), ᾱt = ᾱ(t), parametrising process Pdata → Psampling

Require: Untrained noise predictor function fθ(x, t,x
[M ],M) with parameters θ

1: repeat
2: x0 ∼ P0 = Pdata
3: t ∼ Uniform({1, ..., T})
4: x

[M ]
0 ∪ x

[\M ]
0 ← x0 ▷ Randomly partition data point into motif and rest

5: ▷ Forward noise full sample via sampling from p0|t(x0) ◁
6: εt ∼ Pnoise
7: xt ←

√
ᾱtx0 +

√
1− ᾱtεt

8: ▷ Estimate noise of sample with original motif as additional input ◁

9: ε̂θ ← fθ(xt, t,x
[M ]
0 ,M)

10: Take gradient descent step on
∇θL(ε, ε̂θ) ▷ Typically, L(xtrue, xpred) = ||xtrue − xpred||2

11: until converged or max epoch reached
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B.3 Conditional sampling394

Algorithm 6 | RFDiffusion conditional sampling [Watson et al., 2023]

Require: Conditionally trained noise predictor fθ(x, t,M)

Require: Target motif/context x[M ]
0

Require: Noise schedule βt = β(t), ᾱt = ᾱ(t), parametrising process Pdata → Psampling
1: ▷ Sample a starting point xT ◁
2: xT ∼ PT = Psampling

3: ▷ Iteratively denoise for T steps ◁▷ Often PT = N (0, I)
4: for t in (T, T − 1, . . . , 1) do
5: ▷ Overwrite motif variables with target motif and reset their time parameter ◁

6: ▷ Note: Original RFDiffusion zero-centers xt and x
[M ]
0 individually for equivariance. ◁

7: x
[M ]
t ← x

[M ]
0 ▷ Set noisy motif to unnoised motif

8: t[M ] ← 0 ▷ Set timesteps for motif to 0
9: ε̂θ = fθ(xt, t,M) ▷ Predict noise with learned network

10: ▷ Denoise sample with learned reverse process xt−1 ∼ pt−1|t(xt) ◁
11: ▷ Perform reverse drift ◁

12: xt−1 ←
1√

1− βt

(
xt −

βt√
1− ᾱt

ε̂θ

)

13: ▷ Perform reverse diffusion, which is often Brownian motion in Rn, i.e. Pnoise = N (0, I) ◁
14: εt ∼ Pnoise if t > 1 else εt ← 0
15: xt−1 ← xt−1 + σtεt ▷ A common choice is σt = β(t)
16: return x0

Algorithm 7 | Replacement conditional sampling

Require: Unconditionally trained noise predictor fθ(xt, t)
Require: Noise schedule βt = β(t), ᾱt = ᾱ(t), parametrising process Pdata → Psampling

Require: Target motif x[M ]
0

1: ▷ Sample a starting point xT ◁
2: xT ∼ PT = Psampling

3: ▷ Iteratively denoise for T steps ◁▷ Often PT = N (0, I)
4: for t in (T, T − 1, . . . , 1) do
5: ▷ Predict noise with learned network ◁
6: ε̂θ ← fθ(xt, t)

7: ▷ Denoise sample with learned reverse process xt−1 ∼ pt−1|t(xt) ◁
8: ▷ Perform reverse drift ◁

9: xt−1 ←
1√

1− βt

(
xt −

βt√
1− ᾱt

ε̂θ

)

10: ▷ Perform reverse diffusion, which is often Brownian motion in Rn, i.e. Pnoise = N (0, I) ◁
11: εt ∼ Pnoise if t > 1 else εt ← 0
12: xt−1 ← xt−1 + σtεt ▷ A common choice is σt = β(t)

13: ▷ Forward noise the target motif x[M ]
t−1 ∼ p0|t−1(x

[M ]
0 ) ◁

14: ηt−1 ∼ Pnoise if t > 1 else ηt−1 ← 0

15: x
[M ]
t−1 ←

√
ᾱt−1x

[M ]
0 +

√
1− ᾱt−1ηt−1

16: xt−1 ← x
[\M ]
t−1 ∪ x

[M ]
t−1 ▷ Insert noised motif into current sample

17: return x0
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Algorithm 8 | Reconstruction Guidance (i.e. Moment Matching (MM) Approximation to h-
transform)

Require: Unconditionally trained noise predictor fθ(xt, t) , target motif/context x[M ]
0 .

Require: Noise schedule βt = β(t), ᾱt = ᾱ(t), parameterising process Pdata → Psampling
Require: Guidance scale (schedule) γt = γ(t)
Require: Conditioning loss l(xtrue, xpred). e.g, Gaussian MM l(xtrue, xpred) = ||xtrue − xpred||2

1: ▷ Sample a starting point xT ◁
2: xT ∼ PT = Psampling ▷ Often PT = N (0, I)

3: ▷ Iteratively denoise and condition for T steps ◁
4: for t in (T, T − 1, . . . , 1) do
5: ε̂θ = fθ(xt, t) ▷ Predict noise with learned network

6: ▷ Estimate current denoised estimate via Tweedie’s formula ◁
7: x̂0(xt, ε̂θ)← 1√

ᾱt
(xt −

√
1− ᾱtε̂θ) ▷ c.f. also eq. 15 in Ho et al. [2020]

8: ▷ Perform gradient descent step towards condition on motif dimensions M ◁

9: xt ← xt − γt∇θl(x
[M ]
0 , x̂

[M ]
0 (xt, ε̂θ)) ▷ Requires backprop through fθ

10: ▷ Denoise sample with learned reverse process xt−1 ∼ pt−1|t(xt) ◁

11: xt−1 ← (1− βt)
−1/2

(
xt − βt(1− ᾱt)

−1/2ε̂θ
)

▷ Perform reverse drift
12: ▷ Perform reverse diffusion, which is often Brownian motion in Rn, i.e. Pnoise = N (0, I) ◁
13: εt ∼ Pnoise if t > 1 else εt ← 0
14: xt−1 ← xt−1 + σtεt ▷ A common choice is σt = β(t)
15: return x0

Algorithm 9 | Replacement conditional Sampling [Lugmayr et al., 2022]

Require: Unconditionally trained noise predictor fθ(xt, t)
Require: Noise schedule βt = β(t), ᾱt = ᾱ(t), parametrising process Pdata → Psampling

Require: Target motif x[M ]
0

1: ▷ Sample a starting point xT ◁
2: xT ∼ PT = Psampling

3: ▷ Iteratively denoise for T steps ◁▷ Often PT = N (0, I)
4: for t in (T, T − 1, . . . , 1) do ▷ T time steps
5: for r in 1, . . . , R do ▷ R repaint steps
6: ▷ Predict noise with learned network ◁
7: ε̂θ ← fθ(xt, t)

8: ▷ Denoise sample with learned reverse process xt−1 ∼ pt−1|t(xt) ◁

9: xt−1 ← (1− βt)
−1/2

(
xt − βt(1− ᾱt)

−1/2ε̂θ
)

▷ Perform reverse drift
10: ▷ Perform reverse diffusion, often Brownian motion in Rn, i.e. Pnoise = N (0, I) ◁
11: εt ∼ Pnoise if t > 1 else εt ← 0
12: xt−1 ← xt−1 + σtεt ▷ A common choice is σt = β(t)

13: ▷ Forward noise the target motif x[M ]
t−1 ∼ p0|t−1(x

[M ]
0 ) ◁

14: ηt−1 ∼ Pnoise if t > 1 else ηt−1 ← 0

15: x
[M ]
t−1 ←

√
ᾱt−1x

[M ]
0 +

√
1− ᾱt−1ηt−1

16: xt−1 ← x
[\M ]
t−1 ∪ x

[M ]
t−1 ▷ Insert noised motif into current sample

17: if r < R and t > 1 then ▷ Forward noise sample from t− 1 to t, xt ∼ pt|t−1(xt−1)
18: ζt−1 ∼ Pnoise

19: xt ←
√

1− βt−1xt−1 +
√
βt−1ζt−1

20: return x0
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C Amortised learning of Doob’s transform395

C.1 Proof of proposition 2.5396

Proof. (Informal) Via the mean squared error property of the conditional expectation the minimiser397

is given by:398

f∗
t (h,y,A) = E

[
∇Xt

ln pt|0(Xt|X0)|Y = y,Xt = h
]

(24)

Then:399

f∗
t (h,y,A) =

∫
∇h ln pt|0(h|X0)p0|t(X0|Xt = h,Y = y)dX0

=

∫ ∇hpt|0(h|X0)

p0|t(h|X0)

pt|0(Xt = h|X0,Y = y)p(X0|Y = y)

p(Xt = h|Y = y)
dX0

=
1

p(Xt = h|Y = y)

∫ ∇hpt|0(h|X0)

p0|t(h|X0)
pt|0(Xt = h|X0)p(X0|Y = y)dX0

=
1

p(Xt = h|Y = y)
∇h

∫
pt|0(h|X0)p(X0|Y = y)dX0

=
1

p(Xt = h|Y = y)
∇hp(Xt = h|AX0 = y) = ∇h ln p(Xt = h|Y = y),

400

D Experimental details: image experiments401

In the image experiment, we use the DDPM [Ho et al., 2020] formulation for the diffusion model402

with N = 1000 steps, a linear β-schedule with β0 = 10−4 and βN = 2 · 10−2.403

Data We focus on the CELEBA [Liu et al., 2015] and FLOWERS [Nilsback and Zisserman, 2008]404

image datasets. For each of these datasets, we follow the same preprocessing procedure consisting405

of centrally cropping the image to size 64× 64, and rescaling to pixel values [−1, 1]. We use this406

information to also clip our model’s prediction.407

Noise model The noise model ϵθ consists of a UNET architecture with four downsampling blocks408

consisting of 2d convolutional layers of dimensionality 128, 256, 384 and 512, respectively. We409

apply attention in the middle layers of the UNet with four heads. Throughout the network, we use the410

SiLU activation function, no dropout and group normalisation layers. The amortised network differs411

from the unconditional network in the fact that it accepts as input twice the number of channels (six412

instead of only three RGB channels). The unconditional models operate directly on the three RGB413

channels while the amortised network operates on the RBG channels, the mask and the condition.414

We can represent the mask and the condition information, however, into a single input with the same415

dimension as the image. The values of this input will be equal to the condition when the mask is 1416

and set to a padding value of −2 where the mask is 0. We concatenate the image R3×H×W with417

the condition and mask input of size R3×H×W into an image with six channels. Due to this minor418

difference, our amortised network has 68.159M parameters while the unconditional networks have419

68.156M parameters (roughly 0.005% fewer).420

Methods In the amortised setting we follow Alg. 5. In 90% of the training steps, we pass a condition421

to the network. The other 10% contains a mask consisting of only 0’s. For the reconstruction guidance422

method, we use a guidance term of γ = 10.0.423

Metrics We measure the performance of the methods using mean squared error (MSE) and the424

perceptual metric LPIPS. Both these metrics compare the similarity between the original image (from425

which a patch was taken) and the conditional sample. For each metric, we compute the mean across426

64 test images and repeat the experiment 5 times to get error estimates.427
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