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Abstract

Reinforcement learning from human feedback (RLHF) is a method for enhancing
the finetuning of large language models (LLMs), leading to notable performance
improvements that can also align better with human values. Building upon the
inspiration drawn from RLHF, this research delves into the realm of drug op-
timization. We employ reinforcement learning to finetune a drug optimization
model, enhancing the original drug across multiple target objectives, while retains
the beneficial chemical properties of the original drug. Our proposal comprises
three primary components: (1) DRUGIMPROVER: A framework tailored for
improving robustness and efficiency in drug optimization. (2) A novel Advantage-
alignment Policy Optimization (APO) with multi-critic guided exploration algo-
rithm for finetuning the objective-oriented properties. (3) A dataset of 1 million
compounds, each with OEDOCK docking scores on 5 human proteins associated
with cancer cells and 24 proteins from SARS-CoV-2 virus. We conduct a com-
prehensive evaluation of APO and demonstrate its effectiveness in improving the
original drug across multiple properties. Our code and dataset are made public at:
https://github.com/xuefeng-cs/DrugImprover.

1 Introduction

The cost of discovering a new drug through conventional approaches is estimated to range from
hundreds of millions to billions of dollars [17]. This high cost is due to the lengthy and resource-
intensive nature of the drug discovery and development process, which involves multiple stages,
including target identification, lead compound identification, preclinical testing, and clinical trials.
Despite significant efforts, the overall success rate in drug discovery is relatively low, with many
drug candidates failing to progress beyond the early stages of development. Additionally, the time
required to identify an effective drug can vary from several years to over a decade, depending on the
complexity of the disease and the efficiency of the drug discovery process. Such concerns are driving
a growing trend towards drug repurposing [3], which involves using FDA-approved drugs for different
diseases instead of developing new drugs from the ground up. Yet despite some successes [48], the
effectiveness of drug repurposing has been limited since the drug is usually designed very specifically
for treating a particular disease. However, the emergence of rapidly evolving virus variants [24], such
as those associated with SARS-CoV-2 [75], as well as drug resistant cancer cells [39] has sparked
increased interest and an urgent need to expedite the discovery of effective drugs.

In this work, we propose a reinforcement learning (RL)-based drug optimization approach to adapt
existing drugs to fast-evolving virus variants and cancer cells, helping to address the aforementioned
limitations of drug discovery and drug repurposing. RL has achieved superhuman performance in
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domains such as Chess [31], video games [41], and Robotics [12]. However, despite promising early
results [10, 23, 29, 42, 61, 76], RL has yet to attain similar levels of performance for complex real-life
problems like drug discovery.

We identified four challenges that have thus far prevented RL from impacting drug design: Search
space complexity: An RL algorithm for drug discovery needs to demonstrate both sample and
computational efficiency. However, the overwhelming complexity of the search space [45] renders RL
incapable of adequately exploring potential effective actions and states required for policy learning.
Sparse rewards: In contrast to the continuous reward environment found in popular environments like
DeepMind Control Suite [62] or Meta-World [73], drug generation operates within a sparse reward
environment where rewards are only obtainable upon a complete molecule. Complex scoring criteria:
Generated molecules must fulfill multiple criteria, including solubility and synthesizability, while
also achieving a high docking score when targeting a specific site. Preservation of original beneficial
properties: Lastly, as drugs with similar chemical structures should exhibit similar biological/chemical
effects [8], it is crucial to strike a balance between optimizing the drug and preserving the original
drug’s beneficial properties.

Our contributions. We present DRUGIMPROVER, a drug optimization framework designed to
improve various properties of an original drug in a robust and efficient manner. Within this work-
flow, we introduce the Advantage-alignment Policy Optimization (APO) algorithm to utilize the
advantage preference to perform direct policy improvement under the guidance of multiple critics.
DRUGIMPROVER and APO effectively tackle the challenges outlined above in the following manner:

(1.) Sample complexity, sparsity, and computational efficiency. Because of the sparse reward
nature of the drug design, pure RL often finds it challenging to learn a good policy due to the
complexity of the search space. To reduce this complexity, APO employs an imitation-learning-
based approach to initialize a generator policy with desirable behavior based on prior experience
of designing drug SMILES [67] strings. APO also addresses the problem of reward sparsity by
adapting Monte-Carlo sampling to obtain estimated rewards for intermediate steps. Finally, because
calculating the docking score through virtual screening (such as OEDOCK [30]) is computationally
costly [16], DRUGIMPROVER adopts a transformer-based surrogate model to obtain docking scores
more efficiently. (2.) Multiple objectives. APO employs multiple critics, each of which serves as an
evaluator with domain-specific expertise, such as knowledge related to solubility, synthesizability,
and other relevant factors. These multiple critics guide the exploration in the drug refinement process
toward the improved properties. (3.) Property preserving. To preserve the original drug’s beneficial
properties, throughout the optimization process, it is crucial to balance the preservation of the original
drug’s beneficial properties with the optimization of other chemical attributes. To achieve this, we
use Tanimoto similarity as a critic to maximize the Tanimoto similarity between the original and
generated drugs. (4.) Finetuning. Our proposed APO algorithm utilizes the advantage preference of
a generated drug over the original drug based on multiple objectives as the policy gradient signal and
performs direct policy improvement without the need for training an additional reward model.

In summary, our contributions are:

•We introduce DRUGIMPROVER, a framework tailored for efficient drug design. Within DRUGIM-
PROVER, we propose a novel APO algorithm that performs advantage-alignment policy optimization
with multi-critic guided exploration.

• By conducting comprehensive experiments on real world viral and cancer target proteins, we
illustrate that APO consistently enhances existing molecules/drugs across all desired objectives,
leading to improved drug candidates.

•We release a drug optimization dataset comprising 1 million ligands along with their OEDOCK
scores to five proteins associated with cancer: colony stimulating factor 1 receptor (CSF1R) kinase
domain (PDB ID: 6T2W), NOP2/Sun RNA methyltransferase 2 (NSUN2) (AlphaFold derived), RNA
terminal phosphate cyclase B (RTCB) ligase (PDB ID: 7P3B), and Tet methylcytosine dioxygenase
1 (TET1) (AlphaFold derived), and Wolf-Hirschhorn syndrome candidate 1 (WHSC1) (PDB ID:
7MDN) and 24 high-affinity binding sites on protein SARS-CoV-2: 3CLPro (PDBID: 7BQY) virus.
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2 Related Work

2.1 Imitation learning

Imitation learning (IL) is a machine learning technique whereby an agent learns to perform a task by
mimicking the actions and behaviors of an expert demonstrator. IL has demonstrated its advantage
over pure RL in improving the sample complexity of search space and reward sparsity [38]. Offline
IL methods, such as behavioral cloning [46], necessitate an offline dataset of trajectories collected
from one or more experts, which can result in cascading errors within the learner’s policy. In contrast,
interactive IL methods, exemplified by DAgger [52] and AggreVaTe [51], employ Roll-in-Roll-out
(RIRO) scheduling, which assumes that the learner starts with a default roll-in from the initial state
and then actively switches to an expert to roll out for the remaining steps in the trajectory. However,
previous RIRO scheduling work assumed that an expert is readily available to conduct roll-outs from
any given state. In practice, such an expert may not always be accessible. Additionally, it assumed
that once a roll-out has commenced, it cannot return to a previous intermediate state. In our work, we
combine RIRO from interactive IL with Monte Carlo sampling, establishing both a learner policy πG

θ

and a guide policy πβ . Importantly, our guide policy may be identical to the learner’s policy, serving
the dual purpose of conducting roll-outs and estimating the returns of intermediate states through
Monte Carlo sampling.

2.2 Learning from multiple experts

IL often assumes the presence of a near-optimal expert to imitate; however, accessing such an expert
may be costly or even impossible. In reality, it is often easier to access suboptimal oracles, each
with unique expertise. Therefore, learning from multiple experts becomes an increasingly important
topic, although identifying state-wise expertise remains a challenge. Several methods, such as EXP3,
EXP4 [2], and CAMS [35, 36], have approached the challenge of learning from multiple oracles
by framing it as a contextual bandit or online learning problem. However, these techniques cannot
address sequential decision-making problems like Markov decision processes (MDPs) because they
lack the capability to incorporate state information. In the realms of RL and IL, MAMBA [13],
MAPS [38], and RPI [37] have explored IL from multiple experts. While MAMBA selects an oracle to
query at random, which compromises its sample efficiency, MAPS introduces active policy selection
and active state exploration for settings with multiple experts, enhancing the sample efficiency of the
learning process. In contrast to previous approaches, our work takes a different approach. Instead
of selecting a specific expert to imitate, we treat each expert as a domain-specific reward function
and utilize an ensemble of these reward functions as critics to guide the learner’s policy towards
exploration in molecular space.

2.3 Reinforcement learning for molecule generation

One prominent approach in drug design employs RL [60] to maximize an expected reward defined as
the sum of predicted property scores as generated by property predictors. In terms of representation,
existing works in RL for drug design have predominantly operated on SMILES string representations
[10, 23, 42, 43, 47, 56, 61, 76, 77] or graph-based representations [1, 21, 29, 71]. In our research,
we have chosen to employ the SMILES representation. However, previous studies have primarily
focused on discovering new drugs, frequently overlooking molecular structure constraints during
policy improvement. This oversight can lead to drastic changes in structure or functional groups,
making most of the generated compounds unsynthesizable. In contrast, our work concentrates on
optimizing existing drugs while preserving their beneficial properties, rather than creating entirely
new ones from scratch.

2.4 RL finetuning and AI alignment

To achieve drug improvement, finetuning the generator model is critical. Our approach is closely
connected to prior methodologies aimed at aligning models with feedback from both humans
(RLHF [6, 14, 26, 63]) and AI (RLAIF [7, 34]), which have more recently found applications
in the fine-tuning of language models for tasks like text summarization [9, 58, 69, 78], dialogue
generation [25, 28, 70], and language assistance [6]. One of the core features of RLHF and RLAIF
lies in training a reward model from the comparison feedback, such as Rank Responses to align
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Human Feedback (RRHF) [74], Reward Ranked Finetuning (RAFT) [18], Preference Ranking Op-
timization (PRO) [55], and Direct Preference Optimization (DPO) [49]. Differing from previous
works, our approach doesn’t rely solely on feedback from a single human or AI model; instead, we
utilize multiple critics to evaluate the advantage preference of generated drug against original one
based on comprehensive assessments, including factors like solubility, and more. Moreover, we make
direct policy improvement by using the advantage preference in standard RL without training an
additional reward model.

3 Preliminaries

Markov decision process. We consider a finite-horizon Markov Decision Process (MDP)M0 =
⟨S,A,P, R, T ⟩ with state space S , action space A, deterministic transition dynamics P : S ×A →
S ′, unknown reward function R : S × A → [0, 1], and horizon T . We assume access to a set of
K critics each represents a domain experts, defined as C =

{
Ck

}K
k=1

, where C : sT → R and sT
represents a final state. The policy π : S → A maps the current state to a distribution over actions.
Given an initial state distribution ρ0 ∈ ∆(S), we define dπt as the distribution over states at time t
under policy π. The goal is to train a policy to maximize the expected long-term reward. The quality
of the policy can be measured by the Q-value function Qπ : S ×A → R is defined as:

Qπ (s, a) := Eπ

[
T∑

t=0

R (st, at) |s0 = s, a0 = a

]
, (1)

where the expectation is taken over the trajectory following π, and the value function is as follows:

V π (s) := Ea∼π(·|s)[Q
π (s, a)] . (2)

Drug generation process. We formalize the drug generation problem within the framework of
Markov Decision Processes (MDP). Given a dataset consisting of real-world structured sequences
represented as SMILES [67] strings, our objective is to train a generative policy πG

θ to generate
a high-quality sequence denoted as Y1:T = (y1, . . . , yt, . . . , yT ) , yt ∈ Y . Here, Y represents the
vocabulary of potential SMILES tokens, constituting the action space denoted as A. The length of
the sequence, denoted as T , represents the planning horizon. At time step t, the state st−1 comprises
the currently generated tokens (y1, . . . , yt−1), and the action a corresponds to the next token yt to be
selected. While the policy model πG

θ (yt|Y1:t−1) operates in a stochastic manner, the state transition
function P becomes deterministic once an action has been chosen. The primary objective of the
generator policy πG

θ is to initiate the generation process from an initial state Y1 and maximize the
expected final reward at the end of the sequence:

J (θ) = E
Y1∼d

πG
θ

0

[rT |θ] , (3)

where rT represents the reward associated with a fully generated sequence. To estimate the Q value,
we reference the REINFORCE algorithm [68], which we define as follows:

Q (s = Y1:T−1, a = yT ) = R (Y1:T ) . (4)

Nonetheless, the reward function only supports a reward value for a completed sequence. In our
case, we aim to compute the Q for partial sequences at intermediate time steps, accounting for the
expected future reward upon sequence completion. To achieve this, we employ a Monte Carlo search
approach and Roll-in-Roll-out (RIRO) [13, 38, 51] scheduling, utilizing a roll-out policy denoted as
πβ to sample the unknown last T − t tokens. We represent an N-time Monte Carlo search as follows:{

Y 1
1:T , ..., Y

N
1:T

}
= MCπβ (Y1:t;N) , (5)

where Y N
t+1:T is sampled based on the roll-out policy πβ and the current state Y n

1:t is stochastically
sampled via the roll-in policy πG

θ . In our experiment, we set πβ to be identical to the learner policy
πG
θ , although it can alternatively be an oracle policy if one is accessible. To enhance the precision of

expected Q value assessment, we execute the roll-out policy from the current state to the end of the
sequence N times and estimate its averaged rewards on a batch of complete samples. Thus:

Q (s = Y1:t−1, a = yt) =

{
1
N

∑N
n=1 R (Y n

1:T ) ,where Y n
1:T ∈MCπG

θ (Y1:t;N) , if t < T ,

R (Y1:t) , if t = T .
(6)

4



Algorithm 1 Advantage-alignment policy optimization with multi-critic guided exploration

Require: generator policy πG
θ ; roll-out policy πβ ; a pre-train dataset B, critics C with weights W.

1: Initialize πG
θ with random weight θ.

2: Pre-train πG
θ usng MLE on B.

3: β ← θ.
4: for n = 1, . . . , N do
5: s0 ∼ ρ0, where ρ0 ∈ ∆(B).
6: Generate a sequence Y1:T = (yt, . . . , yT ) ∼ πG

θ (·|s0).
7: Compute advantage preference RAdvantage-Preference by (6)(9)(13)(14).
8: Update generator parameters via policy gradient by (16)(17).
9: β ← θ.

Here, QπG
θ (s, a) stands for the action-value function, which represents the expected reward at state s

of taking action a ∼ πG
θ (s) and following the current policy πG

θ to complete the sequence. Policy
gradient optimizes a parameterized policy to maximize the expected total reward by repeatedly
estimating the gradient g := ∇θJ (θ). There is a general form for the policy gradient [53, 59]:

g =

T∑
t=1

Eyt∼πG
θ (yt|Y1:t−1)

[
∇θ log π

G
θ (yt|Y1:t−1) · Φt

]
, (7)

where Φt could be in several forms. One common choice for Φt in previous drug discovery work is
Q (Y1:t−1, yt) [23, 72].

Limitations of previous work. 1) Prior studies concentrated primarily on the discovery of new
drugs from the ground up [1, 47, 76]. In contrast, we focus on the relatively less explored, yet highly
practical and significant, issue of drug optimization. In drug optimization, the goal is to enhance
an existing drug according to multiple objectives while preserving a similar chemical structure. 2)
Earlier research employed Q [23, 72] in gradient calculations, which can introduce high variance
and potentially lead to divergence. Our advantage-alignment policy gradient approach avoids this
problem.

4 DRUGIMPROVER Framework for Drug Optimization

In this work, we propose DRUGIMPROVER framework as in Fig. 1, which comprises two major
components: (1) An Advantage-alignment Policy Optimization with multi-critic guided exploration
algorithm (APO), and (2) A dedicated workflow tailored for drug optimization, aimed at enhancing
both robustness and computational efficiency. We introduce each part in detail as follows.

4.1 Advantage-alignment policy optimization with multi-critic guidance algorithm

Multi-critic guidance. Given an ensemble of critics

C(s0, sT ) =
[
CDruglikeness(sT ), C

Solubility(sT ), C
Synthesizability(sT ), C

Docking(sT ), C
Tanimoto(s0, sT )

]
,

where C : Y1:T → R. Here we design the reward function to align the drug optimization with
multiple objectives. Also, we need to preset a weight array over the objectives,

W =
[
WDruglikeness,W Solubility,W Synthesizability,−1 ·WDocking,W Tanimoto] . (8)

The weights represent the importance of each objective. For a fully generated SMILE sequence, we
derive the following multi-step accumulated reward function based on assessments from multiple
critics

Rc (Y1:T ) := Rc (Y1:T |s0) =
T∑

t=1

N∑
n=1

Norm (C (s0, Y
n
1:T )) ·W, Y n

1:T ∈MCπG
θ (Y1:t;N) . (9)

We use Norm2 to normalize different attributes onto the same scale. In this study, we employ
the Tanimoto similarity calculation CTani-Similarity to quantify the chemical similarity between the

2Here, we define Norm as min-max normalization to scale the attributes onto the range [-10, 10].
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generated compound and the original drug. Essentially, this calculation involves first computing
Morgan Fingerprints [50] for each molecule and then measuring the Jaccard distance [27] (i.e.,
intersection over union) between the two fingerprints.

Advantage-alignment policy gradient. The return, denoted as Qπ, often exhibits significant
variance across multiple episodes. One approach to mitigate this issue is to subtract a baseline b (s)
from each Q. The baseline function can be any function, provided that it remains invariant with
respect to a. For a generator policy πG

θ , the advantage function [59] is defined as follows:

AπG
θ (s, a) = QπG

θ (s, a)− b (s) (10)
A natural choice for the baseline is the value function V π (s), which represents the expected reward
at a given state s under policy π. The value function can be expressed as follows:

V (s) = Ea∼πG
θ (s)[Q(s, a)] = Eyt∼πG

θ (Y1:t−1)[Q(Y1:t−1, yt)] (11)

Thus, we have advantage function as

AπG
θ (s, a) = AπG

θ (Y1:t−1, yt) = QπG
θ (Y1:t−1, yt)− V πG

θ (Y1:t−1) . (12)

Remark 4.1. When compared to QπG
θ as described in (7), the selection of AπG

θ tends to result in
potentially lower variance. This assertion can be intuitively justified by considering the interpretation
of the policy gradient: the direction of a step in the policy gradient should increase the probability
of actions better than the average and decrease the probability of actions worse than the average.
The advantage function essentially gauges whether an action is superior or inferior to the policy’s
default behavior. Consequently, we opt to designate Φt as the advantage function AπG

θ . This choice
ensures that the gradient term Φt∇θ log π

G
θ (at|st) aligns with an increase in πG

θ (at|st) only when
AπG

θ (a, s) > 0. This is contrast with previous method using Q. For a more thorough examination of
the variance of policy gradient estimators and the impact of employing baseline, please refer to [22].

Drug optimization. In the drug optimization problem, the primary objective is different from
objective of drug generation problem in (3). In this work, we employ the one-step RL [11, 44]
method and regard the drug optimization method as a sequence to sequence language generation task.
Rather than treating each token as an individual action, we treat the entire sequence Y1:T as a single
action generated by the policy πG

θ . Subsequently, we receive rewards from critics, and the episode
concludes. This leads to the formulation of our advantage function as follows:

AπG
θ (s, a) = QπG

θ (Y1:t−1, yt) |t=T − V πG
θ (s0) = Rc (Y1:T )−Rc (s0) , (13)

where s0 is the initial state sequence drawn from the distribution ρ0, which corresponds to our buffer
known as B containing selected SMILES strings. Thus, by applying amplifier γ, the advantage
preference of the generated versus the original drug is

RAdvantage-Preference (s0, Y1:T ) = γn (Rc (Y1:T )−Rc (s0)), (14)

where γn ∈ R+ represents an amplifier of advantage preference at n-th episode, n ∈ [N ], that controls
the aggressiveness or conservatism in performing policy gradient updates. The advantage preference
of (14) will be employed directly in the policy gradient (16) to finetune the generator policy πG

θ .
The rationale behind the advantage preference is to produce a sequence that surpasses the initial
state sequence s0 in every objective. In this work, our objective is to maximize the expected final
advantage preference compared to the original drug s0 at the end of the sequence as follows

J (θ) = Es0∼ρ0

[
RAdvantage-Preference

T |s0, θ
]
, (15)

Thus, we have gradient as follows:

g = Es0∼ρ0

 ∑
Y1:T∼πG

θ (·|s0)

∇θ log π
G
θ (Y1:T |s0) ·RAdvantage-Preference (s0, Y1:T )

 , (16)

where Y1:T is the generated sequence from πG
θ and s0 is the original drug. As the expectation E [·]

can be approximated through sampling techniques, we proceed to update the generator’s parameters
as follows:

θ ← θ + αng, (17)
where α ∈ R+ denotes the learning rate at n-th episode.

6



Step 1. Collect Demonstration Data 
and Pre-train a Generative Policy

Given a molecular dataset

Cluster the dataset 
by scaffold

Random sample from 
each scaffold and 
collect N data

Use docking tool
to calculate 
the docking score 

base on target site

Left: Train a 
docking surrogate 
model with 
diversified data

Right: Pretrain 
a generator 
policy

with top N data

Step 2. Create a Reward Model

Critics

Weights

R(s)

Step 3. Fine-Tuning Drug Optimization Policy through APO

vs
Calculate the 
advantage-preference

Use the advantage-preference 
to finetune the generator 
policy through APO algorithm

Sample a drug 

Generate the 
drug candidate

Figure 1: DRUGIMPROVER framework. It comprises two major components: (1) An Advantage-
alignment Policy Optimization with multi-critic guided exploration algorithm (APO). (2) A workflow
tailored for drug optimization, aimed at enhancing both robustness and computational efficiency.

4.2 DRUGIMPROVER framework

Step 1: Training a docking surrogate model Csurrogate. To begin, we perform a scaffold-based
clustering procedure on 2 million drug-like molecules selected from the ZINC15 dataset [57].
Subsequently, we conduct stratified sampling within these clusters, resulting in the acquisition of
a chemically diverse subset comprising 1 million representative ligands. The next step involves
employing OEDOCK, for which we developed a parallel workflow using Parsl [4] and Colmena [66]
to leverage the supercomputing resources of Polaris at the Argonne Leadership Computing Facility
(ALCF) [20] which calculates the docking scores of the ligands when interacting with the binding
target site of SARS-CoV-2 and RTCB. Upon the completion of this extensive docking run, we employ
both the molecules and their corresponding docking scores to train a docking surrogate [64], which
we then employ as a critic. This critic takes ligands as input and generates estimated docking scores
as output; its primary function is to guide the exploration process in drug design. We also apply the
surrogate model to predict the docking scores for the remaining molecules within ZINC15. Informed
by these predictions and the scaffold-based clusters, we proceed to sample 2 million molecules, which
serve as the training data for our replay buffer denoted as B. This optimization process seeks to
strike a balance between achieving high docking scores and maintaining chemical diversity within
the dataset.

Step 2: Pre-training a generator policy πG
θ . Next, we perform random sampling of ligands from B

based on each scaffold. Subsequently, we employ the sampled data to pre-train the πG
θ policy using

a self-supervised imitation learning approach. In this context, each ligand within B is considered a
complete drug generation trajectory, comprising a sequence of states and actions. This pre-training
procedure enables the πG

θ policy to mimic the process of generating a high-quality ligand with a
promising chemical structure. Analogous to how AlphaGo [54] learns from expert prior experiences,
this approach reduces the non-trivial sample complexity when compared to training πG

θ from scratch,
which would necessitate extensive exploration efforts within the high-dimensional space.

Step 3: Performing objective-oriented policy finetuning: Finally, we fine tune the original drug
based generator on the following objectives: (1) The docking surrogate model. (2) Solubility. (3)
Synthetizability. (4) Tanimoto similarity to the initial molecule. Each objective serves as a domain-
specific critic, with each critic individually specializing in and optimizing for a specific molecular
property. These reward critics are tailored to optimize the learner policy πG

θ with reward signals that
align with their respective specialties. We balance these objectives by assigning different weight to
each critic. Subsequently, we apply Algorithm 1 to finetune the learner policy πG

θ for improving the
drug optimization process.
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Target site Algorithm Druglikeliness ↑ Synthesizability ↑ Solubility ↑ Docking score ↓ Tanimoto similarity ↑

3CLPro (PDBID: 7BQY) MLE 0.14 (0%) 0.11 (0%) 0.10 (0%) -1.48 (0%) –
ORGAN 0.37 (170%) 0.53 (368 %) 0.31 (207 %) -4.32 (191 %) –
Naive RL 0.40 (198 %) 0.62 (441 %) 0.35 (251 %) -4.96 (234 %) –
APO (Ours) 0.45 (233%) 0.69 (506%) 0.40 (303 %) -5.73 (286 %) 0.959

RTCB (PDBID: 4DWQ) MLE 0.14 (0%) 0.11 (0%) 0.10 (0%) -1.61 (0%) –
ORGAN 0.39 (187 %) 0.64 (461 %) 0.35 (246 %) -6.04 (274%) –
Naive RL 0.39 (185 %) 0.66 (478 %) 0.36 (260 %) -6.61 (281 %) –
APO (Ours) 0.46 (237%) 0.77 (577%) 0.42 (323%) -6.98 (332%) 0.940

Table 1: Main results. A comparison between three baselines {MLE,ORGAN,Naive RL} with
APO on objectives {druglikeness, synthesizability, solubility, docking score,Tanimoto similarity}
based on 3CLPro and RTCB datasets. The presented values represent the mean values of generated
molecules and Tanimoto similarity is measured on valid molecules. Values displayed in bold indicate
notable improvements, and the percentage of improvement over the MLE baselines is enclosed in
parentheses.

5 EXPERIMENTS

5.1 Experiment Setup

Baselines and sequence generative model. In our experimental setup, we compare our approach
against three representative baselines: Maximum Likelihood Estimation (MLE) and ORGAN [23]
and Naive RL. For the MLE baseline, we utilize the pretrained LSTM-based generator πG

θ , without
proceeding further to finetune the model. ORGAN is a RL-based method for drug discovery, utilizing
policy gradient based on the Q-value and employing a combination of a discriminator and domain
objectives as rewards." Naive RL is using the same architecture as ORGAN, except that it gives zero
weight to the discriminator. Appendix (A.3, A.5, A.7) provides further details.

Molecules and vocabulary. Molecules can be depicted as textual sequences through the usage
of SMILES notation, a method that captures the topological characteristics of a molecule based
on well-defined chemical bonding principles. In the SMILES notation for small molecules, each
character represents an atom or a bond in the molecule. The character set in SMILES sequence forms
the vocabulary or action space in our setting. The SMILES representation adheres to predefined
grammar rules. (See more details in Appendix A.1)

Datasets. The dataset used for training the surrogate models is built with a similar scheme as in
an earlier virtual screening on SARS-CoV-2 targets [5, 15]. Each datapoint has an input SMILES
string representing the molecule and an output docking score. The receptors used are prepared with
the OEDOCK application and FPocket [33] is used if the protein active site is unknown. The score
for each molecule is determined by inputting the molecular structure and receptor to OEDOCK and
computing the minimum Chemgauss4 score over the ensemble of poses in the docking simulation. A
set of 1 million orderable compounds within the ZINC15 dataset were docked to the 3CLPro (PDBID:
7BQY) SARS-CoV-2 protein and the RTCB (PDBID: 4DWQ) cancer protein. The resulting datasets
are used for training two separate surrogate models for each protein.

Critics and evaluation metric. In this study, we evaluate the efficacy of APO in generating molecules
with desirable attributes within the context of pharmaceutical drug discovery. We leverage the RDKit
[32] chemoinformatics package and employ various performance metrics as follows: Druglikeness:
The druglikeness measure the likelihood of a molecule being suitable candidate for a drug. Solubility:
This metric assesses the likelihood of a molecule’s ability to mix with water, commonly referred to
as the water-octanol partition coefficient (LogP). Calculation is performed using RDKit’s Crippen
function. Synthetizability: This parameter quantifies the ease (score of 1) or difficulty (score of 0)
associated with synthesizing a given molecule [19]. Docking Score: The docking score assesses
the drug’s potential to bind and inhibit the target site. To enable efficient computation, we employ a
docking surrogate model (See Appendix A.4) to output this score.

5.2 Experimental results

Table 1 and Fig. 2 demonstrate that APO outperforms both MLE and the RL-based drug discovery
baseline, ORGAN and Naive RL, across all the performance metrics for both viral and cancer-
related proteins. Furthermore, APO not only surpasses all the baseline methods but also achieves a
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Figure 2: Visualize the performance curve associated with Table 1, featuring APO (in red), and the
baselines: MLE (in green), ORGAN (in blue), Naive RL (in yellow) .

high Tanimoto similarity compared to the original drug. This suggests that it retains the beneficial
properties of the original drugs while enhancing others.

Two main factors contribute to APO outperforming ORGAN. The first factor is the APO algorithm
employs advantage-alignment, which increases the probability of generating the sequence only when
it exhibits a positive preference advantage and decreases it when the advantage is negative. In contrast,
ORGAN consistently increases the probability of sampled actions for positive rewards, leading to
faster convergence of the APO algorithm. Additionally, APO employs the Tanimoto similarity
constraint, which enables the generator policy to explore a nearby molecular domain in relation to the
original one. This increases the probability of preserving chemical scaffolds and functional groups
that are beneficial for binding to target proteins and dissolving in solvents. Note that the performance
curve of Tanimoto similarity in Fig. 2e initially decreases and then increases. This trend aligns
ideally with the RL-based molecule generation improvement process. The initial decrease occurs
because RL reduces the complexity of the original molecule to enhance the validity of the generator
policy while improving the generated molecules’ diversified properties. This causes the molecule
to deviate from its original structure, leading to a decrease in Tanimoto similarity. Subsequently,
there is a gradual increase in the trend as the generated molecules reach a decent level of diverse
properties and begin optimizing their structure towards that of the original molecule, resulting in
an increasing trend in Tanimoto similarity. Finally, the generated molecules not only improve the
desired properties but also achieve a high Tanimoto similarity to the original drug. This reduces the
likelihood of drastic structural changes that might result in unsynthesizable compounds. This process
demonstrates that APO achieves a balance between optimizing desired properties and preserving the
beneficial properties of the original drug.

6 Conclusion

We present DRUGIMPROVER, a practical and effective framework for drug optimization. Within the
framework, we introduce APO, an advantage-alignment policy gradient algorithm with multi-critic
guided exploration. This algorithm aims to align the generator policy with objectives from multiple
critics and performs policy gradient updates based on the advantage preference. APO seeks to achieve
maximal improvement based on the original drug while maintaining its necessary properties. Finally,
we evaluate the docking score of our optimized compounds to two proteins, 3CLPro and RTCB,
which are target proteins of SARS-CoV-2 and human cancer, respective. Our results reveal that our
optimized compounds exhibit significantly stronger binding affinity to both proteins compared to
compounds generated using baseline methods. Moreover, our compounds outperform those from
the baseline method across all performance metrics, including solubility and synthesizability. Our
research opens up new possibilities for enhancing drug optimization and inspires future investigations
into addressing challenges within the realm of drug optimization. This includes exploring areas like
the integration of graph information, a facet that our current work does not tackle.
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A Appendix

A.1 Molecules and vocabulary

Here’s a breakdown of what each character means in the SMILES string:

Atoms: Capital letters: Represent the element symbols for atoms. For example, "C" stands for
carbon, "H" for hydrogen, "O" for oxygen, "N" for nitrogen, and so on. Lowercase letters: Used to
specify the configuration of certain atoms, such as "c" indicating a carbon atom in an aromatic ring.

Bonds: Single Bond(-): Represented by a hyphen (-), signifying a single covalent bond between two
adjacent atoms. Double Bond(=): Represented by an equal sign (=), indicating a double covalent
bond between two adjacent atoms. Triple Bond(#): Represented by a pound sign (#), denoting a triple
covalent bond between two adjacent atoms. Aromatic Bond (":"): Represented by two consecutive
colons (":"), signifying an aromatic bond in an aromatic ring structure.

Numbers: Subscript Numbers: Positioned after an atom symbol to specify the number of that
particular atom in the molecule.

Parentheses ( and ): Parentheses: Employed to group atoms or substructures together.

Dot (.) and Plus (+): Dot (.) may be used to separate distinct fragments or components of a molecule.
Plus (+)is used to indicate the presence of charged ions, such as "[Na+]" representing a sodium ion.

Other Characters Brackets ([ and ]): May be used to enclose isotopic information or intricate
substructures. Slash (/) and Backslash (): Sometimes used to denote stereochemistry. Ampersand
(&): Used to represent a bridge bond in complex molecular structures.

A.2 Binding sites of 3clpro and RTCB

(a) 3CLPro. (b) RTCB.

Figure 3: The binding sites of proteins 3CLPro (PDB ID: 7BQY) (Left) and RTCB (PDB ID:
4DWQ) (Right). Binding sites are defined around the crystallized compound using Open Eye
software.

A.3 The sequence generative model

The sequence generative model. To simulate the real-world structured sequences, we consider a
language model to capture the dependency of the tokens. In this work, we use a RNN with LSTM cells
as πG

θ to generate the real data distribution p (xt|x1, . . . , xt−1). Maximum Likelihood Estimation
(MLE) aims to minimize the cross-entropy between the true data distribution p and our approximation
q, which is expressed as Ex∼p[log q(x)].
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ORGAN. ORGAN [23] is a generative model designed to optimize sequence distributions. It achieves
this by leveraging a combination of domain-specific metrics (objective) and adversarial feedback
obtained from a discriminator. The balance between these two components is maintained through a
tunable parameter. Within the ORGAN architecture, the generator is constructed as an RNN equipped
with LSTM cells. In contrast, the discriminator employs a Convolutional Neural Network (CNN)
specifically tailored for text classification tasks. Notably, the Wasserstein distance is chosen as the
loss function for the discriminator, ensuring enhanced stability during training.

Naive RL. ORGAN employs a combination of a discriminator and domain objectives as rewards. And
by setting the weight of discriminator to be zero, the model ignores the discriminator and becomes a
"Naive" RL algorithm [23].

A.4 Surrogate model

The surrogate model [65] is a simplified version of a BERT-like transformer, which is widely used
in natural language processing. In the model, tokenized SMILES strings are inputted and then
positionally embedded. Outputs are then passed to a stack of five transformer blocks, each containing
a multi-head attention layer (21 heads), dropout layer, layer normalization with residual connection,
and feed forward network. The feed forward network consists of two dense layers followed by
dropout and layer normalization with residual connection. After the transformer block stack, a final
feed forward network is used to output the predicted docking score.

A.5 Setup

Setup. To guarantee an equitable assessment, every algorithm (ORGAN, Naive RL, and APO), is
trained using an identical pretrained LSTM-based generator πG

θ . During the training of ORGAN
and Naive RL, we adhere to the multi-objective training approach described in [23], which involves
alternating between objectives (synthesizability, solubility, docking score and druglikeliness). Specifi-
cally, each epoch of ORGAN is dedicated to a different objective, cycling through them for a total of
25 epochs per objective. APO enhances all objectives simultaneously in each epoch.

A.6 Computing infrastructure and wall-time comparison

We trained our docking surrogate models using 4 nodes of the Polaris supercomputer at the Ar-
gonne Leadership Computing Facility where each node contains CPUs (64 cores) and 4 A100 GPU
nodes [20]. The training time for each model was approximately 3 hours. We conducted other
RL experiments on a cluster that includes CPU nodes (approximately 280 cores) and GPU nodes
(approximately 110 Nvidia GPUs, ranging from Titan X to A6000, set up mostly in 4- and 8-GPU
configurations). Based on the computing infrastructure, we obtained the wall-time comparison in
Table 2 as follows.

Methods Total Run Time

ORGAN 13h
Naive RL 12h
APO 21h

Table 2: Wall-time comparison between different methods.
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A.7 Hyperparameters and architectures

Table 3 provides a list of hyperparameter settings we used for our experiments.

Parameter Value

Shared

Learning rate 1 × 10−4

Optimizer Adam

Nonlinearity ReLU

# of Epochs for Training 100

APO Objective Weight

Docking Score 0.15

Druglikeliness 0.15

Synthesizability 0.15

Solubility 0.15

Tamimoto Similarity 0.4

APO Other

Amplifier 100 (3CLPro), 10 (RTCB)

Fingerprint Size 16

Normalize Min/Max [−10, 10]

Table 3: Hyperparameters.

A.8 Code and data availability

For all code and data used in experiments, please refer to https://github.com/xuefeng-cs/
DrugImprover. We release a drug optimization dataset comprising 1 million ligands along with
their OEDOCK scores to five proteins associated with cancer: colony stimulating factor 1 receptor
(CSF1R) kinase domain (PDB ID: 6T2W), NOP2/Sun RNA methyltransferase 2 (NSUN2) (AlphaFold
derived), RNA terminal phosphate cyclase B (RTCB) ligase (PDB ID: 7P3B), and Tet methylcytosine
dioxygenase 1 (TET1) (AlphaFold derived), and Wolf-Hirschhorn syndrome candidate 1 (WHSC1)
(PDB ID: 7MDN) as well as one protein from SARS-COV2: 3CLPro (PDBID: 7BQY). The receptor
file generated from OpenEye is also released here. All docking was generated via OpenEye FRED
docking. Additionally, we release the pretrained model for each protein [40].
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