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Abstract

Recent breakthroughs by deep neural networks (DNNs) in natural language
processing (NLP) and computer vision have been driven by a scale-up of
models and data rather than the discovery of novel computing paradigms.
Here, we investigate if scale can have a similar impact for models designed
to aid small molecule drug discovery. We address this question through a
large-scale and systematic analysis of how DNN size, data diet, and learning
routines interact to impact accuracy on our Phenotypic Chemistry Arena
(Pheno-CA) benchmark — a diverse set of drug development tasks posed on
image-based high content screening data. Surprisingly, we find that DNNs
explicitly supervised to solve tasks in the Pheno-CA do not continuously
improve as their data and model size is scaled-up. To address this issue,
we introduce a novel precursor task, the Inverse Biological Process (IBP),
which is designed to resemble the causal objective functions that have
proven successful for NLP. We indeed find that DNNs first trained with
IBP then probed for performance on the Pheno-CA significantly outperform
task-supervised DNNs. More importantly, the performance of these IBP-
trained DNNs monotonically improves with data and model scale. Our
findings reveal that the DNN ingredients needed to accurately solve small
molecule drug development tasks are already in our hands, and project
how much more experimental data is needed to achieve any desired level of
improvement. We release our Pheno-CA benchmark and code to encourage
further study of neural scaling laws for small molecule drug discovery.

1 Introduction

Rich Sutton (Sutton, 2019) famously wrote, “the biggest lesson that can be read from 70
years of AI research is that general methods that leverage computation are ultimately the
most effective, and by a large margin.” The scale of compute, model, and data have proven
over recent years to be the most important factors for developing high performing systems
in nearly every domain of AI including computer vision (Dehghani et al., 2023), natural
language processing (Kaplan et al., 2020), reinforcement learning (Hilton et al., 2023), protein
folding (Lin et al., 2023), and design (Hesslow et al., 2022). The foundation of each of these
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revolutions-of-scale rests on empirically derived “neural scaling laws,” which indicate that
continued improvement on a given domain’s tasks are constrained by compute, model, and
data scale rather than novel algorithmic solutions or additional domain-knowledge. Thus,
one of the extraordinary opportunities for AI is finding and exploiting similar scaling laws in
domains that have not benefited from them yet.
Small molecule drug discovery is one of the domains where scaling laws could have an outsized
impact. Biological experiments are costly and time intensive, while the space of molecules
has been estimated to contain at least 1060 compounds with drug-like properties (Lipinski
et al., 2012). The current standard technique for identifying interactions between small
molecules and biological targets involves high throughput screening (HTS), in which libraries
of hundreds of thousands of molecules are tested empirically in parallel for specific biological
readouts at great cost. The ability to accurately predict in silico whether a small molecule
engages a biological target would at the very least reduce the size of the chemical libraries
needed to find bioactive molecules and support significantly faster and cheaper discovery.
Moreover, if models for small molecule drug discovery follow similar scaling laws as those
discovered for natural language processing (Kaplan et al., 2020), then it would mean that
even the loftiest goals are within reach, such as treatments for today’s intractable diseases
and medicines personalized at the level of N = 1. Can DNNs speed up drug discovery, and
if so, do their abilities follow neural scaling laws?
One of the most promising avenues for generating data that could be used to train DNNs on
drug discovery tasks is image-based high-content screening (iHCS). This type of screen is
widely used to measure the effects of drugs and find targets for treating disease because it is
can capture a large variety of biological signatures through different stains or biosensors, and
has been helpful in drug development applications including hit identification (Simm et al.,
2018; Bray et al., 2017) and expansion (Hughes et al., 2020), lead optimization (Caie et al.,
2010), generating hypotheses on a drug’s mechanism-of-action (Young et al., 2008; Boyd et al.,
2020; Sundaramurthy et al., 2014) and target (Schenone et al., 2013), and also identifying
and validating disease targets (see Chandrasekaran et al., 2021 for a review). While iHCS
is potentially more flexible than standard biochemical assays used in drug development, it
still requires significant time, money, and effort to set up and run. The recently released
JUMP dataset (Chandrasekaran et al., 2023a,b) contains nearly two orders of magnitude
more iHCS data than was previously available to the public (Bray et al., 2017), and therefore
represents a significant opportunity for deep learning. However, it is still unclear if DNNs
can leverage the data in JUMP for drug discovery.
Here, we use the JUMP dataset to investigate if DNNs trained on it for small molecule drug
discovery tasks follow neural scaling laws. A positive answer to this question could bring
about a revolution in biomedicine that mimics the ones in natural language processing and
computer vision over recent years, making it faster, easier, and cheaper than ever to develop
drugs.

Contributions. We began by augmenting the JUMP dataset with our Phenotypic Chem-
istry Arena (Pheno-CA): a diverse set of drug discovery tasks posed on a subset of images
in JUMP. We then tested if the performance of DNNs trained to solve each task could
be predicted by the size of their models or the amount of data they were trained with.
Surprisingly, it could not: the performance of these “task-supervised” DNNs was either
unaffected or hurt by an increase in data and model sizes (Fig. A1a). However, DNNs
in domains like natural language processing and vision rely on specific objective functions
to achieve efficient scaling — for instance, GPT models use the causal language modeling
objective (Kaplan et al., 2020). We reasoned that a similar precursor task, especially one
that could force DNNs to learn a causal model of biology, could have have a large impact on
scaling. We therefore developed a novel precursor task, the inverse biological process (IBP),
and performed large-scale and systematic experiments on the Pheno-CA to understand how
this task interacted with the size of DNN architectures and the amount of data used in
training them. Through this large-scale survey, we discovered the following:

• DNNs pretrained with IBP significantly outperform task-supervised DNNs on the Pheno-
CA.
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• DNNs pretrained with IBP also follow linear scaling laws on the Pheno-CA that accurately
predict how many novel samples and replicates are needed to achieve arbitrary levels of
accuracy.

• IBP-pretrained DNNs improved in predictable ways as the total number of model param-
eters was increased. The effect of model depth, on the other hand, was less clear, and
impacted only a subset of tasks.

• Together, these laws indicate that to achieve 100% accuracy on a task like predicting a
compound’s mechanism-of-action, JUMP would need to be expanded by approximately
3.25M compounds. Achieving this scale of data would take an impossible amount of time
and money, meaning that additional experimental advances are needed to improve neural
scaling laws and move significantly beyond the performances of our IBP-trained models.

• We release our Pheno-CA challenge and code at https://anonymous.4open.science/
r/pub_scaling_mols-B3E1/ to encourage the field to continue investigating scaling laws
in iHCS drug discovery.

2 Methods

JUMP data The Joint Undertaking for Morphological Profiling (JUMP) project has
produced the largest publicly available dataset for iHCS. The dataset consists of images
of Human U2OS osteosarcoma cells from 12-different data generating centers. Each image
depicts a well of cells in a plate that have been perturbed then stained with the “Cell
Painting” toolkit. Cell Painting involves staining cells with six dyes that mark eight different
cell organelles or compartments: DNA, nucleoli, actin, Golgi apparatus, plasma membrane,
endoplasmic reticulum (ER), cytoplasmic RNA, and mitochondria. Together, these stains
provide an unbiased read-out on the effects of different perturbations on cell biology (Fig. 1a).
JUMP perturbations include the addition of 116,750 different compounds and the knockout
of 7,975 genes by Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) ∗.
There are a total of 711,974 compound images and 51,185 CRISPR images, which amounts
to an average of five replicates of each perturbation type.

Cell profiler The standard approach to processing iHCS data is to extract representations
of the image content using “Cell Profiler,” a suite of hand-crafted computer vision algorithms
that segments cells then extracts features from each of them, like their sizes, shapes, intensity
distributions, and textures. This process is repeated for each Cell Painting imaging channel,
and the resulting feature vectors are concatenated together to produce a single representation
of each cell’s state. This method notably contrasts with the usual approach in computer
vision of end-to-end training with DNNs to solve a task from images, but it is the standard
in iHCS (Chandrasekaran et al., 2021) and advised for the JUMP dataset (Chandrasekaran
et al., 2023b). We therefore begin with Cell Profiler (CP) representations of cells for all
experiments reported here.

Preprocessing We preprocessed CP data in two ways. First, we aggregated all cells from
a well into a single representation, which captured the effect of its particular experimental
perturbation. Second, we normalized these representations to control for experimental
nuisances such as well, plate, and batch effects. To aggregate cells into a single well-based
representation, we took the median CP-vector per well then normalized these representations
by subtracting off the per-plate median representation and dividing by the per-plate inter-
quartile-range (Wong et al., 2023). Lastly, before training, we principle components analysis
(PCA) whitened the representations (Bell & Sejnowski, 1996), which yielded 878−dimensional
vectors for each well. As we describe in the Appendix C, some of the models were also
explicitly trained to ignore experimental nuisances.

Phenotypic Chemistry Arena. We introduced the Phenotypic Chemistry Arena (Pheno-
CA, Fig. 1b) to evaluate DNNs trained on JUMP data for drug discovery tasks The Pheno-CA
consists of annotations on 6,738 well images from JUMP for four different discovery tasks.

∗JUMP also contains gene overexpression manipulations, but we do not include those images in
this study.
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Figure 1: Designing a scalable precursor task for phenotypic drug discovery.
(a) We investigate the ability of DNNs to learn drug discovery tasks from the large-scale
JUMP dataset. (b) Our Phenotypic Chemistry Arena (Pheno-CA) measures the ability of
DNNs trained on JUMP data to solve diverse drug development tasks. Task performance
is measured through either “learned probes,” small neural network readouts that map a
DNN’s learned representations to the labels for a task, or through “0-shot” evaluations of
performance (no task-specific training). (c) We find that only those DNNs pretrained on
a specialized precursor task — the inverse biological process — follow scaling laws on the
Pheno-CA.

These tasks are (i) predicting a drug’s mechanism-of-action (“MoA deconvolution,” 1,282
categories), (ii) predicting a drug’s target (“target deconvolution,” 942 categories), (iii)
predicting a molecule’s identity (“molecule deconvolution,” 2,919 categories), and (iv) finding
compounds with the same target as a CRISPR perturbation (Fig. 1b). The remaining images
from JUMP are used for training, and depict perturbations from all 116,750 represented
in the JUMP dataset (including the 2,919 compounds in the Pheno-CA). None of the well
images included in the Pheno-CA were used for training.
DNN performance on the Pheno-CA tasks was measured in different ways. Performance
on MoA and target deconvolution was recorded as top-10 classification accuracy, i.e., a
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model was considered accurate if the model’s top-10 predictions included the molecule’s
true (labeled) MoA or target. Molecule deconvolution performance was recorded using
categorical cross entropy loss, which measured how close the distribution of predicted
molecule identities matched the true identity. Finally, to measure how accurately models
could find the compounds that match a CRISPR perturbation, we constructed curves that
indicated how many guesses it took a model to find the appropriate molecules, then computed
area-under-the-curve (AUC).

Inverse biological process learning as a generalist precursor task DNN and data
scale paired with the appropriate precursor training task — so-called causal language modeling

— have lead to breakthroughs in natural language processing. Here, we devised a learning
procedure that we hypothesized would similarly help DNNs learn biological causality from
JUMP data. Our basic insight is that each cell in the JUMP dataset undergoes a “forward
biological process”, in which the addition of a small molecule transforms its phenotype from
wildtype to a perturbed one (Fig 1c). We reasoned that training a model to invert this
process would force it to learn the host of underlying biophysical processes that cause a cell
to change phenotypes, and that the resulting model representations would prove useful for
downstream discovery tasks including those in the Pheno-CA. We refer to this precursor task
as the inverse biological process (IBP). If a model improves on tasks in the Pheno-CA after
IBP-training it means that the motivating hypothesis is at least partially correct. In practice,
IBP involves learning to predict a molecule from the phenotype it causes. We investigated
the efficacy of IBP on the Pheno-CA by first pretraining a DNN for this task before freezing
its weights and training task-specific readouts on its representations as detailed below.

Model zoo. We built a large “zoo” of DNNs to understand how changing model architecture,
supervision methods, and the amount of data seen during training affects performance on
the Pheno-CA. Each DNN ended with a task-specific 3-layer multilayer perceptron (MLP),
which mapped its representations of image content to a Pheno-CA task.
All DNNs consisted of a basic MLP block with a residual connection. The MLP consisted of
a linear layer, followed by a 1-D BatchNorm, and finally a gaussian error linear unit (GELU;
Hendrycks & Gimpel, 2016). DNNs consisted of 1, 3, 6, 9, or 12 layers of these blocks, each
with 128, 256, 512, or 1512 features.
We tested two types of DNN supervision. (i) DNNs were directly trained to solve each
Pheno-CA task. (ii) DNNs pretrained with IBP were frozen and their representations were
mapped to a Pheno-CA task with the 3-layer MLP readout. In other words, we compared
DNNs that learned task-specific representations to DNNs that learned IBP representations.
Each of these DNNs was also given images from 1e3, 2e4, 5e4, 8e4 or 1e5 molecules that
were not included in the Pheno-CA, and hence were out-of-distribution (OOD) of that
challenge. Our hypothesis was that OOD compound information would help IBP-trained
DNNs more accurately model the biophysical effects of compounds on U2OS cells, and
ultimately outperform task-supervised DNNs on Pheno-CA tasks. Finally, each DNN was
trained on 1%, 25%, 50%, 75%, or 100% of replicates of each of the compounds included in
their training set.
All combinations of data, model, and supervision parameters yielded 1,876 unique DNNs.
Each DNN was implemented in PyTorch and trained using one NVIDIA TITAN X GPU
with 24GB of VRAM. DNNs were trained with a AdamW (Loshchilov & Hutter, 2017), a
learning rate of 1e-4, a batch size of 6000, and mixed-precision weights using Huggingface
Accelerate library (https://github.com/huggingface/accelerate). Training was ended
early if test performance stopped improving for 15 epochs. Training took at most 16 hours
per DNN.

3 Results

The Phenotypic Chemistry Arena (Pheno-CA) is a large-scale evaluation benchmark we
created to measure the performance of DNNs trained on iHCS for diverse phenotypic
drug discovery tasks: (i) predicting a drug’s mechanism-of-action (“MoA deconvolution”;
Chandrasekaran et al., 2021), (ii) predicting a drug’s target (“target deconvolution”; Schenone
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Figure 2: Pheno-CA challenge 1 : Mechanism-of-action (MoA) deconvolution. (a)
DNNs were either trained directly for MoA deconvolution from phenotypes or first pretrained
on the IBP task before their weights were “frozen” for testing. Testing in each case involved
fitting a 3-layer probe to generate MoA predictions for a molecule’s imaged phenotype. (b)
The highest-performing DNN was an IBP-pretrained model. A UMAP decomposition of its
image representations qualitatively reveals clustering for the most commonly appearing MoAs.
(c) IBP-trained DNN performance is a linear function of the amount of data each model is
trained on. Each individual colored curves depicts the performance of DNNs trained on a
fixed number of molecules that fall “out-of-distribution” of the molecules in the Pheno-CA.
Decreases on the right end of each curve indicate overfitting. The scaling law depicted here
is a linear fit of the max-performing models in each curve. Chance is 7e − 2. (d) While DNN
performance generally improved as models grew in parameters, 9-layer DNNs were more
accurate than 12-layer DNNs.

et al., 2013), (iii) predicting a molecule’s identity (“molecule deconvolution”; Chandrasekaran
et al., 2021), and (iv) finding compounds that have the same target as a CRISPR perturbation
(Fig. 1b; Zhang & Gant, 2008; Méndez-Lucio et al., 2020). By surveying 1,876 different
DNNs on the Pheno-CA, we identified the training routines and DNN architectures that
yielded the highest performance on these tasks, and discovered scaling laws that predict
performance for certain model classes with respect to the amount and types of data used to
train them.

Challenge 1: Mechanism-of-action deconvolution. Phenotypic screening is a powerful
way to find active compounds in a biologically relevant setting. Phenotypic screens have
inspired many important drug programs, including the discoveries of FKBP12 (Harding
et al., 1989), calcineurin25 (Liu et al., 1992), and mTOR26 (Brown et al., 1994). However,
it often requires substantial effort to understand the mechanism-of-action and targets of
small molecules that are bioactive in a phenotypic screen. By MoA, we mean the effect the
compound has on a cellular pathway or class of molecules, for instance ‘inhibitor of bacterial
cell wall synthesis’, or ‘glucocorticoid receptor agonist’. In contrast, in the target challenge
below we refer to the actual cellular component (for instance a specific enzyme) that the
compound alters (usually by binding to it). iHCS data has been used in the past to help
solve MoA deconvolution through a “guilt-by-association” approach, in which compounds
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that have known MoAs and targets are added into an experiment and used to deduce those
properties in other compounds (Chandrasekaran et al., 2021).
Here, we pose a version of “guilt-by-association” MoA-discovery on JUMP data. Each DNN
in our zoo was given images of cells perturbed by different compounds, and trained to
predict the MoA of a given compound out of 1,282 possibilities (Fig. 1a). DNNs were either
supervised directly for MoA deconvolution or pretrained with IBP (Fig. 2a). Next, DNN
weights were frozen and three-layer MLP probes were used to transform image representations
from both models into MoA predictions (i.e. there was no direct task supervision for IBP
models).
Our DNN zoo yielded a wide range of performances on this task. At the low end was a 12.09%
accurate 12-layer and 128-feature DNN trained with IBP on 100% of out-of-distribution
molecules but only 0.01% of the replicates of each compound. At the high-end was a 52.62%
accurate 9-layer and 1512-feature DNN trained with IBP on 100% of out-of-distribution
molecules and 75% of the replicates of each compound. The representations of this performant
IBP-trained DNN clearly separated the phenotypes of different MoAs (Fig. 2b), and it was
46% more accurate than the highest performing task-supervised DNN (36.08%; 6-layer and
256-feature DNN). Overall, IBP-trained DNNs were significantly more accurate at MoA
deconvolution than task-trained DNNs (T (624) = 7.97, p < 0.001). These results indicate
that the IBP precursor task promotes generalist representations that outperform task-specific
training and are already well suited for MoA deconvolution.
Another key difference we found between task-supervised and IBP-trained DNNs is that
the performance of the latter followed a scaling law. The MoA deconvolution accuracy of
IBP-trained DNNs linearly increased as they were trained on additional molecules that were
out-of-distribution (OOD) of the Pheno-CA (Fig 2c). The discovered law indicated that
IBP-DNN performance increases by 1% with the addition of approximately 56K (non-unique)
OOD molecules for training. While DNN performance generally improved with the total
number of model parameters, the rate of improvement was higher for 9-layer DNNs than
12-layer DNNs (Fig 2c; analyzed further in Appendix ADD).
We further analyzed scaling laws for MoA prediction by recomputing them for different
amounts of experimental replicates. That is, we expected that DNNs which were able
to observe more experimental variability would scale better than those that observed less
variability. Indeed, we found that more replicates lead to better models on average, and that
more data also generally improved the scaling law slope (Fig. A2).

Challenge 2: Target deconvolution. Identifying a bioactive molecule’s target from its
phenotypes is another essential challenge for phenotypic screens. We evaluated the ability of
DNNs to automate this task in the Pheno-CA, and measured how accurately models can
deconvolve a molecule’s target from its phenotype. This task followed the same general
approach as the MoA deconvolution task described above, and tested models for 942-way
target deconvolution (Fig. A3a).
As with MoA deconvolution, IBP-trained DNNs were on average significantly better at
target deconvolution than task-supervised DNNs (T (624) = 15.07, p < 0.001). The lowest
performing DNN (35.00%) was an IBP-trained 12-layer and 256-feature model trained with
0.01% of out-of-distribution molecules and 25% of the replicates of each compound. The
highest performing DNN (67.95%) was an IBP-trained 9-layer and 1512-feature model
trained on 100% of out-of-distribution molecules and 75% of the replicates of each compound.
The representations of this IBP-trained DNN separated the phenotypes of different targets
(Fig. 2b), and it was 33% more accurate than the highest performing task-supervised DNN
(51.03%), which was a 6-layer and 512-feature DNN.
IBP-trained DNNs also followed a scaling law on target deconvolution (Fig. 2c). Model
performance was linearly predicted by the number of out-of-distribution molecules included
in training. The discovered law indicated that IBP-trained DNN performance increases 1%
per 79K (non-unique) OOD molecules added to training. As with MoA deconvolution, DNNs
improved as they grew in size, but the deepest 12-layer models were again less effective than
9-layer models (Fig. A3d).
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Challenge 3: Molecule deconvolution. We next probed how well trained DNNs
could discriminate between individual molecules by their phenotypes, a task which we call
molecule deconvolution. This task involved 2,919-way classification of molecule identities
on the Pheno-CA (Fig. A4a). In contrast to MoA and target deconvolution, molecular
deconvolution represents a distinct challenge since many of the 2,919 compounds may
yield quite similar phenotypes. As such, this task measures the ceiling discriminability of
phenotypic representations in the models.
The best-performing DNN (4.02 CCE) was an IBP-trained 9-layer and 1512-feature model
and trained with 100% of out-of-distribution molecules and 75% of the replicates of each
compound. The representations of this IBP-trained DNN separated the phenotypes of
different targets (Fig. A4b). IBP-trained DNNs followed another scaling law on this task;
their performance was predicted by the number of OOD molecules included in training.
The discovered law indicated that IBP-trained DNN performance improved by 1 point
of crossentropy loss for every additional 606,061 (non-unique) OOD molecules added into
training. DNNs on this task improved as they grew in size, and deeper models performed
better (Fig. A4d).

Challenge 4: Finding compounds that match target perturbations. Another
important use of phenotypic screening is to find compounds that affect biology in ways that
resemble a biological perturbation such as a mutation in a specific gene or protein. If we
could predict such compounds accurately, we could rapidly assemble compound libraries
that we could screen for an illness associated with that mutation.
We investigated the ability of our DNNs to perform this task “zero shot” (i.e., without
a task-specific as like in the other challenges) by comparing model representations of
molecule phenotypes and of CRISPR manipulations of specific targets. We measured the
representational distance between the phenotype of a CRISPR perturbation of one gene and
the phenotype of every molecule in the Pheno-CA. We then computed the rank-order of the
distance between molecules and the target manipulation, and recorded how many molecules
one would need to test in order to find those with the same target as the manipulation
(Fig. A5). We repeated this analysis for all compounds with at least 5 replicates in the
Pheno-CA (12 total) and found that the IBP-trained model with the lowest loss recorded
during IBP-training produced representations that were significantly better suited for this
task than standard Cell Profiler (CP) representations (T (11) = 2.91, p = 0.007).

4 Discussion

The many great breakthroughs of AI over recent years have been guided by the discovery of
neural scaling laws (Kaplan et al., 2020; Dehghani et al., 2023). Prior to these scaling laws,
it was unclear if achieving human- or superhuman-level performance on challenging tasks in
natural language processing and computer vision would require computing breakthroughs
that shifted the paradigm beyond deep learning. But scaling laws indicate that sufficiently
good algorithms are already in our hands, and that we need more data and compute to
unlock their full potential. Here, we provide — to the best of our knowledge — the first
evidence that DNNs trained with our IBP precursor task follow similar scaling laws for small
molecule discovery.
We find that IBP-trained DNNs are very useful for drug development, and significantly better
than task-supervised DNNs of any tested size at solving the tasks in our Pheno-CA. While
the number of experimental replicates included in training affected the overall accuracy
of IBP-trained DNNs (Fig. A2), the introduction of additional molecules that fell “out-of-
distribution” of the Pheno-CA was what actually enabled the accuracy of these models to
scale up. This finding implies that the manifold relationship of small molecules and their
phenotypes is highly nonlinear and filled with local-minima that make it easy for models to
overfit — as if task-supervised DNNs are “looking for their keys under the streetlamp.” While
it may not be feasible to generate the 14M additional experimental images (3.25M more novel
molecules, with about five experimental replicates each) needed to achieve 100% accuracy
on a task like MoA deconvolution, continuing to scale experimental data and DNNs towards
this goal will unlock extraordinary opportunities to expedite drug development for the most
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challenging diseases we face today. We release our code and the Pheno-CA benchmark at
https://anonymous.4open.science/r/pub_scaling_mols-B3E1/ to support these efforts
to revolutionize medicine.
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A Appendix

Glossary: Drug discovery

Mechanism of action (MoA): the biochemical interaction through which a drug
substance produces its pharmacological effect.

Target: the specific molecular target (protein, RNA, etc.) that a drug in-
teracts with to initiate a biological response.

Small molecule drug discovery: the process of identifying and optimiz-
ing low molecular weight organic compounds that can modulate biological targets. It
involves techniques like high-throughput screening, structure-based drug design, and
medicinal chemistry to identify hit compounds, validate their activity, determine
their mode of action, and optimize their potency, selectivity, and drug-like properties
to generate lead compounds and clinical candidates.

Glossary: Machine learning

Neural scaling laws: DNNs trained on certain tasks exhibit predictable improve-
ments as key resources are increased during training and inference. Specifically,
metrics like accuracy, loss, and throughput often improve in predictable ways (often
power law relationships) as compute, data size, and parameters are increased. These
consistent patterns are called scaling laws, and deriving them helps researchers
determine optimal resource investments to efficiently maximize model quality for a
given task.

Out-of-distribution data: these are model inputs that differ from the
data used to train a model. This discrepancy can arise when the data is collected
under different conditions or from a different environment than the training data.
In-distribution data matches the patterns in the training data, while OOD data
exhibits new patterns the model has not seen before. Detecting and handling OOD
inputs is critical for many applications.

Precursor tasks: a common approach in vision and natural language pro-
cessing is to pretrain on model on a large dataset with a task that could learn
generally useful representations of that data. A common approach is with so called
self-supervised objetives, which in vision can encourage a model to build up tolerances
to transformations that objects undergo in the real world. This pretraining can then
improve generalization on downstream classification tasks.

B Task-supervised DNNs do not exhibit scaling laws

We compared DNNs trained directly on Pheno-CA tasks to those that were first pretrained
on IBP then frozen and probed (with an MLP) for decisions on Pheno-CA tasks. We found
that training IBP DNNs on molecules that fell outside the distribution of Pheno-CA molecules
lead to significant improvements in performance over task-supervised DNNs. Moreover,
IBP DNNs followed neural scaling laws; their performance was predicted by the number of
additional OOD molecules they were trained on (as well as the number of replicates of each
of these molecules). Task-supervised DNNs, on the other hand, do not follow scaling laws
(Fig. A1a). Moreover, we found that DNN model scale had very little impact on performance
of these models (Fig. A1b).

C Training to ignore experimental noise

We developed a novel approach to protect DNNs against the experimental noise, which can
overwhelm biological signal captured in iHCS data. To do this, we introduced the source of
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Figure A1: Task-supervised models trained for mechanism-of-action (MoA) de-
convolution do not follow neural scaling laws. (a) The performance of task-supervised
DNNs trained for MoA deconvolution as a function of the amount of data they were trained
on and the number of additional out-of-distribution (OOD) molecules that were included in
training. For each grouping of OOD molecules, DNN performance increased before saturating,
and there was no effect of OOD molecules. (b) The number of parameters and layers in
task-supervised DNNs had a minimal affect on performance.

an image into the input of a model, and added additional losses to the model that made it as
inaccurate as possible at predicting the well, batch, or source of an image (see Appendix C
for details). These losses were cross entropy between the predicted well/batch/source that an
image came from and a uniform distribution across possible wells/batches/sources. Hence,
to satisfy this objective, DNNs had to learn representations that were as indiscriminate of
wells/batches/sources as possible. We found that DNNs trained with this approach performed
significantly better on the Pheno-CA than models that were not.
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D Challenge 1 results: MoA deconvolution

Figure A2: Experimental replicates improve IBP-trained DNN scaling laws. DNN
performance and scaling laws increased as they were trained with larger amounts of replicates
of each experimental perturbation.

E Challenge 2 results: Target deconvolution
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Figure A3: Pheno-CA challenge 2 : Target deconvolution. (a) DNNs were either
trained directly for target deconvolution from phenotypes or first pretrained on the IBP task
then “frozen” for testing. Testing in each case involved fitting a 3-layer probe to generate
target predictions for a molecule’s imaged phenotype. (b) The highest-performing DNN was
an IBP-pretrained model, and its representations discriminate between the most commonly
appearing targets. (c) IBP-trained DNN performance is a linear function of the amount of
data each model is trained on. Each individual colored curves depicts the performance of
DNNs trained on a fixed number of molecules that fall “out-of-distribution” of the molecules
in the Pheno-CA. Decreases on the right end of each curve indicate overfitting. The scaling
law depicted here is a linear fit of the max-performing models in each curve. Chance is
1.1e − 1. (d) While DNN performance generally improved as models grew in parameters,
9-layer DNNs were more accurate than 12-layer DNNs.
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F Challenge 3 results: Molecule deconvolution

Figure A4: Pheno-CA challenge 3 : Molecule deconvolution. (a) DNNs were either
trained directly for molecule deconvolution from phenotypes or first pretrained on the IBP
task then “frozen” for testing. Testing in each case involved fitting a 3-layer probe to generate
target predictions for a molecule’s imaged phenotype. (b) The highest-performing DNN was
an IBP-pretrained model, and its representations discriminate between the most commonly
appearing molecules. (c) Molecule deconvolution loss (lower is better). IBP-trained DNNs
follow a scaling law, in which their performance is predicted by the number of molecules
they are trained on that fall “out-of-distribution” of the Pheno-CA. Chance loss is 7.97. (d)
DNN performance generally improved as models grew in depth and parameters.
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G Challenge 4 results: Finding compounds that match target
perturbations

Figure A5: Pheno-CA challenge 4 : Finding compounds that match a target
perturbation. We measured the “zero-shot” effecicay of features from an IBP-trained DNN
vs cell profiler (CP) for finding compounds that share the target of a CRISPR-perturbation.
Lines depict the cumulative number of discovered molecules that match a target. The
IBP-trained DNN is significantly better than CP features (p = 0.007).

H Related work

Deep learning-based chemistry While computational methods have played a large role
in drug development since at least the early 80’s (Van Drie, 2007), big data and large-scale
DNN architectures have recently supported significant advances for a variety of discovery
tasks, such as predicting protein folding (Lin et al., 2023) and designing proteins with specific
functions (Hesslow et al., 2022). Far less progress has been made in leveraging iHCS data
for computational drug development tasks, with several notable exceptions. For instance,
one study (Wong et al., 2023) found that iHCS data from an earlier and smaller iteration of
the JUMP dataset can be used to train models to deconvolve MoAs significantly better than
chance. Others have showed that iHCS carries signal for decoding the types of chemical or
genetic perturbations that have been applied to cells (Moshkov et al., 2023). Our study takes
significant steps beyond these prior ones and aligns iHCS with the goals of large-scale and
data-driven AI in three ways: (i) we introduce the Pheno-CA as a standardized benchmark
for model evaluation, (ii) we identify model parameterizations that perform well on this
benchmark and are immediately useful for drug discovery, and (iii) we discover scaling laws
that describe how datasets like JUMP need to be expanded for continued improvements.
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Small molecule drug development benchmarks While JUMP and the Pheno-CA
offer a unique opportunity to train and evaluate DNNs on iHCS data for small molecule
drug development, there are multiple other benchmarks that have focused on structure-
based approaches to small molecule design. Fréchet ChemNet Distance (Preuer et al.,
2018) (FCD) measures the distance between a model-generated small molecule and the
distribution of molecules modeled by a DNN trained to predict the bioactivity of 6,000
molecules. Scoring high on this benchmark means that a model generates compounds
that are within distribution of the FCD-model’s representations. Guacamol (Brown et al.,
2019) and molecular sets (Polykovskiy et al., 2020) (MOSES) are benchmarks that evaluate
a model’s generated molecules according to their FCD, validity, uniqueness, and novelty.
Finally, MoleculeNet (Wu et al., 2017) consists of multiple types of benchmarks for models
spanning quantum mechanics, physical chemistry, biophysics, and predictions of physiological
properties like toxicity and blood-brain barrier penetration. These benchmarks can synergize
with the Pheno-CA, for instance, to tune models for filtering molecules predicted by our
Pheno-CA-adjudicated DNNs to have desirable phenotypic qualities.

I Limitations

JUMP and other iHCS datasets present significant opportunities for advancing DNNs in
small molecule discovery. However, the scaling laws that we discover demonstrate some
key limitations. Purchasing just the 3.25M molecules needed to reach 100% accuracy in
MoA deconvolution would cost around $325M (assuming $100 per compound). Generating
replicate experiments for each could multiply that cost by orders of magnitude. Thus, there
is an essential need to identify new imaging and experimental methods that can generate
cheaper and better data for training DNNs with IBP. A partial solution to this problem is
time-lapse imaging of single cells (Arrasate et al., 2004; Finkbeiner et al., 2015), which enables
analysis of single cells over time. Such time-course data has already been successfully used
in multiple deep learning applications (Linsley* et al., 2021; Wang et al., 2022; Christiansen
et al., 2018) and could approximate and supercharge the effects of replicates on scaling laws
that we observed for MoA deconvolution (Fig. A2).
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